好文档 - 专业文书写作范文服务资料分享网站

最新人教版八年级数学上册全等三角形证明经典50题及答案.docx

天下 分享 时间: 加入收藏 我要投稿 点赞

22.(6分)如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M. (1)求证:MB=MD,ME=MF

(2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.

(1)连接BE,DF. ∵DE⊥AC于E,BF⊥AC于F, ∴∠DEC=∠BFA=90°,DE∥BF, 在Rt△DEC和Rt△BFA中, ∵AF=CE,AB=CD, ∴Rt△DEC≌Rt△BFA(HL), ∴DE=BF.

∴四边形BEDF是平行四边形. ∴MB=MD,ME=MF; (2)连接BE,DF. ∵DE⊥AC于E,BF⊥AC于F, ∴∠DEC=∠BFA=90°,DE∥BF,

在Rt△DEC和Rt△BFA中, ∵AF=CE,AB=CD, ∴Rt△DEC≌Rt△BFA(HL), ∴DE=BF.

∴四边形BEDF是平行四边形. ∴MB=MD,ME=MF.

23.已知:如图,DC∥AB,且DC=AE,E为AB的中点, (1)求证:△AED≌△EBC.

(2)观看图前,在不添辅助线的情况下,除△EBC外,请再写出两个与△AED的面积相A等的三角形.(直接写出结果,不要求证明): OD

E

BC

证明:

∵DC∥AB ∴∠CDE=∠AED ∵DE=DE,DC=AE ∴△AED≌△EDC ∵E为AB中点 ∴AE=BE ∴BE=DC ∵DC∥AB ∴∠DCE=∠BEC ∵CE=CE ∴△EBC≌△EDC ∴△AED≌△EBC

24.(7分)如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.

求证:

AEDFBD=2CE.

BC 证明:

∵∠CEB=∠CAB=90° ∴ABCE四点共元 ∵∠AB E=∠CB E ∴AE=CE ∴∠ECA=∠EAC

取线段BD的中点G,连接AG,则:AG=BG=DG ∴∠GAB=∠ABG

而:∠ECA=∠GBA (同弧上的圆周角相等) ∴∠ECA=∠EAC=∠GBA=∠GAB 而:AC=AB ∴△AEC≌△AGB ∴EC=BG=DG ∴BE=2CE

25、如图:DF=CE,AD=BC,∠D=∠C。求证:△AED≌△BFC。

EFDCAB

证明:∵DF=CE, ∴DF-EF=CE-EF, 即DE=CF,

在△AED和△BFC中,

∵ AD=BC, ∠D=∠C ,DE=CF

∴△AED≌△BFC(SAS)

26、(10分)如图:AE、BC交于点M,F点在AM上,BE∥CF,BE=CF。

求证:AM是△ABC的中线。

AFBEMC

证明: ∵BE‖CF

∴∠E=∠CFM,∠EBM=∠FCM ∵BE=CF ∴△BEM≌△CFM ∴BM=CM

∴AM是△ABC的中线.

27、(10分)如图:在△ABC中,BA=BC,D是AC的中点。求证:BD⊥AC。

ADBC

∵△ABD和△BCD的三条边都相等 ∴△ABD=△BCD ∴∠ADB=∠CD ∴∠ADB=∠CDB=90°

最新人教版八年级数学上册全等三角形证明经典50题及答案.docx

22.(6分)如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M.(1)求证:MB=MD,ME=MF(2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.(1)连接BE,DF.∵DE⊥AC
推荐度:
点击下载文档文档为doc格式
5hoab9jqx92wkqq4mj6h371qz5d0ci00kjt
领取福利

微信扫码领取福利

微信扫码分享