损伤和皮肤发炎问题也与脂类氧化有关(Lall等,1993;Olivier,1993)。
3. 不同的脂肪酸组成对水产动物免疫细胞和免疫分子的影响不同。一般情况是,n-3PUFA对机体免疫具有抑制作用,而n-6PUFA对机体免疫具有促进作用。鱼油和植物油中不同水平n-3和n-6脂肪酸含量可改变大比目鱼(Paralichthys olivaceus)和大西洋鲑细胞磷脂中脂肪酸的组成(Bell等,1991a,1993,1994)。磷脂中脂肪酸组成的变化会影响类二十烷酸前体物的合成。
竹内俊郎等(1992)用不同类型油脂(甘油三酯、甲酯、乙酯和游离脂肪酸)强化的卤虫投喂给条石鲷(Oplegnathus fasciatus)和真鲷(Pagrosomus major),以比较其对鱼类生长、存活和生命力的饵料效果。实验结果显示:鱼体中HUFA含量与卤虫中PUFA含量有良好的相互关系,在PUFA摄取不好的游离脂肪酸组只得到低的活力,反之摄取HUFA即优质的酯型油脂,特别是给幼仔鱼投喂用乙酯强化的卤虫组,获得了优良的饲育成绩。
脂肪酸对水产动物免疫系统的影响
4. 脂肪酸对鱼类对巨噬细胞聚合体(Macrophage aggregates, MAS)的影响。存在于鱼类的脾、肾或肝中的MAS有多种生理功能,例如细胞废物和外源性物质的再循环/储存/解毒。它们在特异性免疫反应中也发挥着重要的作用,并且可以作为健康指示器(health indicators)。MAS的密度(density)、大小(size)和色素含量(pigment content)的变化长作污染监测的指示器。然而MAS的数量和结构也会受到其他因素的影响,包括一般应激或鱼类的营养状况等。Montero 等(1999)研究发现,饲料中缺乏n-3HUFA能够增加金头鲷脾脏中的MAS的数量,从而增强机体的免疫能力。
脂肪酸对水产动物免疫系统的影响 5. 饵料中EPA/DHA对鱼类生长的影响。研究表明,仔稚鱼饵料中EPA/DHA过高,对鱼类生长、存活不利,其原因是EPA阻止由ARA生成前列腺素(PGs)。尽管ARA是PGs的前体,但一般认为EPA比ARA的作用重要(Sargent et al,1993、1995a),因此适宜比例的EPA与ARA也受到普遍关注。
DHA的三羟基衍生物是淡水鲑鱼鳃中主要的前列腺素,而改善海水仔稚鱼因EFA缺乏而引起的生长缓慢、成活率降低等状况。现已证实(Rainuzzo等, 1994; Rodriguez等,1994), EPA被吸收到肝等组织的生物膜中,尽管尚未探明EPA在这些组织中的作用。此外,EPA还是E3、α-E3等前列腺素的前体物质,它还与ARA竞争并抑制ARA转化为前列腺素。几种海水仔稚鱼在饥饿期间,ARA也会被有选择地保存下来,这说明该n-6系列的高度不饱和脂肪酸也是重要的必需脂肪酸。虽然在仔稚鱼的一些组织中ARA的含量低于EPA的含量,但它是E2、α-E2等前列腺素的重要来源,并在海水仔稚鱼的磷脂酰肌醇中有较高的含量。近年来的研究还证实了ARA的重要性,尽管该脂肪酸不能像DHA和EPA那样提高海水仔稚鱼的生长速度,但它似乎对提高海水仔稚鱼的成活率有重要作用(Castell,1994)。
饵料中 EPA含量过高而 DHA含量过低,可能会导致生物膜磷脂中DHA和EPA含量的不平衡。Watanabe(1993 )认为,仔稚鱼生物膜中 DHA与 EPA比例的失衡可能会明显削弱仔稚鱼抗御外部压力的耐受性,尽管 EPA可能对生物膜结构产生不利影响的机理尚不清楚。
Bell和Colleagues(1993 )研究表明,饲喂添加亚麻油(亚麻酸含量高)饲料的大西洋鲑的白细胞磷脂中的EPA含量比饲喂添加鱼油和向日葵籽油饲料的要高,而饲料中高含量的亚麻酸可以减少从ARA衍生的PGE2和TXB2的产量,这种效应的结果是增强了机体的抗发炎能力和减轻心脏的损伤。Bell和Colleagues(1994)对大菱鲆(Scophthalmus
maximus)幼鱼开展类似的实验,并得到了相似的结果。饲喂添加亚麻酸饲料的鱼类组织中的
EPA含量较高和ARA较低,并伴随着TXB2和PGE含量降低。 脂肪酸对水产动物免疫系统的影响
Bell和Colleagues(1996)发现,饲喂饲料中分别添加向日葵籽油(n-3PUHA含量低)和亚麻油(n-3PUFA含量高)的大西洋鲑大约产生相同量的EPA,他们由此得出n-3PUHA能更好地抑制从二十烷酸转化为n-6PUFA。斑点叉尾鮰饲料中高含量n-3PUHA会降低其疾病的抵抗力(Fraclossi和Lovell,1994)和吞噬及杀菌能力(Lingenfelser等,1995)。Li和Colleagues认为,高含量的n-3PUHA抑制鱼类免疫机能的可能机制与哺乳类的相似,主要是降低吞噬细胞和中性细胞中LTB4的产生以及增加其中LTB5的产生。Fraclossi和Lovell(1994)认为,斑点叉尾鮰饲料中n-3PUHA和n-6PUHA保持适宜的比例有助于提高其免疫功能。Tatner(1996)和Henderson(1996)观察到,投喂高n-3PUHA/n-6PUHA比值饲料的大西洋鲑在感染Aeromonas salmonicida 与Vibrio anguillarum病原体时可以增强其B淋巴细胞的反应和提高存活率。Ashton和Colleagues(1994)研究表明,饲喂富含n-3系列脂肪酸饲料的虹鳟头肾匀浆悬浮液中转移刺激能力比饲喂富含n-6系列脂肪酸饲料组的强。
尽管目前n-3PUFA对鱼类免疫反应影响的报道并不一致,但是富含n-3脂肪酸的日粮确实可以提高细胞膜的稳定性(Erdal等,1991;Klinger等,1996)。这对于水产动物来说显得尤为重要,因为生活在温度变化着的水中要维持细胞膜正常的功能需要n-3脂肪酸。
6. 温度对脂肪酸在鱼类免疫反应中的影响。脂肪酸对鱼类免疫反应的影响与其所处的环境条件密切相关,如温度就会影响脂肪酸对鱼类免疫反应的效应。Lingenfelser等(1995)研究发现,在低温条件下,斑点叉尾鮰饲料中n-3系列脂肪酸含量高时就会增强其免疫功能(特别是增强细胞的吞噬能力),而在高温条件下,饲喂斑点叉尾鮰n-6系列脂肪酸含量高的饲料时,能增强其疾病抵抗能力。水温的这种生理作用也许与n-3脂肪酸维持细胞膜流动性的功能有关,尤其是在噬菌作用的摄取状态时更是如此 脂肪酸对水产动物免疫系统的影响
Fraclossi 和 Lovell(1994)也报道了不同的温度条件会影响脂肪酸对斑点叉尾鮰抗病力效应。温度影响不同脂肪酸对鱼类免疫反应的效应,可能是由于n-3系列脂肪酸主要是维持细胞膜的流动性,这点对吞噬细胞的摄取非常重要。n-3PUHA普遍被认为在低温条件下能增加细胞膜的流动性、柔韧性和通透性,它对所有水产动物来讲均是必需脂肪酸,但不同水产动物种类在不同环境条件下,对必需脂肪酸的需求有一定的差异,这种差异可能是由于不同水产动物本身脂类,也可能主要是细胞膜磷脂脂肪酸组成的特异性决定的。脂肪酸影响机体的免疫反应,很达程度上取决于在细胞膜上二十烷酸的前体物质。饲料中含有高水平的n-6PUHA可以增强免疫反应是由于来自ARA的具有激活作用的二十烷酸量增加,而饲料中含有高水平的n-3PUHA则抑制免疫反应是由于来自EPA抗发炎的二十烷酸产量增加。
也有证据表明,饲料中的n-3系列脂肪酸在鱼体中起到了免疫刺激剂的效果。
目前人们对水产动物的免疫系统还未完全研究清楚,特别是, 水生无脊椎动物免疫机制的基础研究还比较迟缓,加上一些评价标准、检测指标难以确定、检测手段落后等原因,制约着水产动物免疫学的发展,同时也制约了
今后应借鉴其他相关学科的技术、方法和手段,开展脂肪酸对水产动物免疫系统作用机制的深入研究,建立一套适合水产动物脂肪酸营养与其免疫功能及抗病力的研究和检测评价的方法。进一步研究使用不同脂肪源对水产动物免疫功能和抗病力的影响,长期进行水产动物免疫功能和疾病防治的综合调查研究,可为养殖水产动物持续变换脂肪源提供重要的资料。
水产动物饲料添加剂考试题
1.当前水产动物饲料酶制剂研究开发与应用中存在什么主要问题?今后应 如何开发水产饲料酶制剂?
2.请您阐述一下目前已有的几种微生态制剂的作用机理,并结合水产动物及 水产养殖的特点,论述水产动物饲料微生态制剂研究开发的思路及工艺过 程?
3.影响水产动物着色剂使用效果的因素主要有哪些?开发有效的水产动物着 色剂应注意哪些关键性的问题?
4. 请阐述维生素C 影响水产动物免疫力的可能机制?并试述影响维生素C提 高水产动物免疫机能的因素?
5.结合当前水产动物饲料添加剂研究开发及应用现状,阐述今后水产动物饲 料添加剂研究的重点、难点与热点问题?