专题05 数列
一、单选题
1.已知等差数列{an}的前n项和为Sn,a9?A.
11a12?6,a2?4,则数列{}的前10项和为()
Sn2C.
11 12B.
10 119 10D.
8 9【答案】B 【解析】
设等差数列?an?的公差为d,
Qa9?1 a12?6,a2?4,21?a?8d??a1?11d??6???1 2?a1?d?4?解得a1?2?d
Sn?2n?n?n?1?2?2?n2?n
?1111??? Snn?n?1?nn?1∴
11111111110++?+=(1?)+(?)+?+(?)=1?= ??1??2??1022310111111
故选B
2. a1,a2,a3,a4是各项不为零的等差数列且公差d≠0,若将此数列删去某一项得到的数列(按原来的顺序)是等比数列,则A.-4或1 【答案】A 【解析】
a1的值为( ) dB.1
C.4
D.4或-1
a3?a1?2d? a4?a1?3d 若a1、a2、a3 成等比数列,则a22?a1?a3, 根据题意,a2?a1?d 2(a1?d)?a(, 1a1?2d)a12?2a1d?d2?a12?2a1dd2?0, 得到d?0与条件d?0矛盾;
若a1、a2、a4成等比数列,则a2?a1?a4
2( , (a1?d)?a1a1?3d)a12?2a1d?d2?a12?3a1d,
2得到d?a1dQd?0?d?a1 则
2a1 ?1;d2若a1、a3、a4成等比数列,则a3?a1?a4,,
2(a1?2d)?a(?a12?4a1d?4d2?a12?3a1d?4d2??a1d 1a1?3d)Qd?0,?4d??a1, 则
a1 ??4;d2若a2、a3、a4成等比数列,则a3?a2?a4,
2(a1?2d)?(a1?d)(a1?3d)?a12?4a1d?4d2?a12?4a1d?3d2?d2?0,
得到d?0与条件d?0矛盾综上所述:
a1a?1或 1??4. dd故选A.
3.某学生家长为缴纳该学生上大学时的教育费,于2018年8月20号从银行贷款a元,为还清这笔贷款,该家长从2019年起每年的8月20号便去银行偿还相同的金额,计划恰好在贷款的m年后还清,若银行按年利率为p的复利计息(复利:即将一年后的贷款利息也纳入本金计算新的利息),则该学生家长每年的偿还金额是 ( )
aA.
map(1?p)m?1B.
(1?p)m?1?1ap(1?p)mD.
(1?p)m?1ap(1?p)m?1C.
pm?1【答案】D 【解析】
设每年偿还的金额为x,
则a?1?p??x?x?1?p??x?1?p??L?x?1?p?所以a?1?p?mm2m?1,
?1??1?p?m??x??,
?1??1?p????mm解得x?故选D.
ap?1?p??1?p??1
x4.(2020·浙江省学军中学高三月考)已知函数f(x)?e?x?1,数列{an}的前n项和为Sn,,且满足a1?1,2an?1?f(an),则下列有关数列{an}的叙述正确的是( )
A.a5?|4a2?3a1| B.a7?a8 【答案】A 【解析】
a由ex?x?1知,an?1?f(an)?en?an?1?0,故{an}为非负数列,又an?1?f(an),即
C.a10?1 D.S100?26
an?1?ean?an?1,所以an?1?an?ean?2an?1,设g(x)?ex?2x?1,则g'(x)?ex?2,
易知g(x)在[0,ln2)单调递减,且?11?1?2ln2?g(x)?0,又0?a1??ln2,所以, 221110?a2?a1?,从而??an?1?an?0,所以{an}为递减数列,且0?an?,故B、C错误;
222121113731又a2?e??1?e2??()2??,故当n?2时,有an?,所以S100?
42242411111011???L??,故D错误;又a5?,而 24444431|4a2?3a1|?|4a2?|?,故A正确.
22a1?a2?a3?L?a100?故选:A.
5.(2020·河南省高三一模(理))已知Sn是等差数列?an?的前n项和,若S2018?S2020?S2019,设
?1?bn?anan?1an?2,则数列??的前n项和Tn取最大值时n的值为( )
?bn?A.2020
B.20l9
C.2018
D.2017