年兄资料库搜集整理
A.1/100;B.89/100;c.1/108812;D.1/1088720
分析:答案B,1-1/100=99/100,1-1/99=98/99,两项相乘=>98/100,同理往下算=>选B
【75】一条长绳一头悬挂重物,用来测量井的深度,绳子2折,放进井里,有7尺露在井口外面;绳子3折,放进井里,距离井口还差1尺,则井深( )尺。 A.17;B.8.5;C.34;D.21 ;
分析:答案A,设绳长为X X/2-7=x/3+1 x=48 井深=48/2-7=17
【76】用一根绳子测量树的周长,将绳子3折,绕树一周,多余3尺;如果将绳子4折,绕树一周,则只多余1尺,则绳长为( )尺。 A.12;B.24;C.36;D.48;
分析:答案B,设绳长为X X/3-3=x/4-1=树的周长 所以X=24
【79】时钟现在表示的时间是18点整,那么分针旋转1990圈后是( )点钟 a.5;b.4;c.6;d.7
分析:答案B,分针走一圈,时针走一小时=>分针走24圈,时针走24小时,即此时时间还是18点=>1990/24=82余22=>时间为18点再过22小时,即16点。若选b的话,则可把16点理解为下午4点。
【80】有一个用棋子为成的三层空心方阵,最外面一层每边有棋子17格,则摆在这个方阵共( )颗棋子
a.104;b.159;c.168;d.256
分析:答案C,植树问题的变形。 令每边个数a=>围成一周需要的个数为(a-1) ×n,其中n为边数。里面一层的所需个数=外边相邻一层的个数-2,因此该题,令最外面一层为第一层,则该层棋子数为(17-1) ×4=64;第二层每边个数=17-2=15,该层棋子数为(15-1) ×4=56;第三层每边个数=15-2=13,该层棋子数为(13-1)×4=48;综上,棋子
21
年兄资料库搜集整理
总数为64+56+48=168=>选C
【81】甲追乙,开始追时甲乙相距20米,甲跑了45米后,与乙相距8米,则甲还要跑( ) 米才能追上乙? a.20;b.45;c.55;d.30
分析:答案D,甲乙作用时间相同,且t=s/v=>甲跑的距离/乙跑的距离=甲的速度/乙的速度,因此,甲第一次跑的45米/乙第一次跑的距离=甲第二次跑的距离/乙第二次跑的距离=甲的速度/乙的速度,乙第一次跑的距离=45-20+8=33,乙第二次跑的距离=甲第二次跑的距离-8,令甲第二次跑的距离为x=>45/33=x/(x-8)=>x=30
【82】某班有45名学生,参加天文的,文学的和物理的爱好小组各20人,20人,15人。其中,同时参加天文和文学小组的5人,同时参加文学和物理的小组的5人,同时参加物理和天文的小组的3人。并且全班每人都至少参加了以上三个小组中的某一个。三个小组都参加的有(a)人 A. 3 B. 5 C .10 D .13 分析:答案C,
【83】甲、乙2人同时从400米的环行跑道的一点A背向出发,8分钟后2人第三次相遇。已知甲每秒钟比乙每秒多行0.1米,问两人第三次相遇的地点与A点沿跑道上的最短距离是( )
A.116米;B.176米;C.224米;D.234米;
分析:答案B,设乙每秒钟走X米,则甲为X+0.1。8×60×X+8×60×(X+0.1)=400×3,X=1.2,8分钟甲乙二人相遇时,乙走的路程为1.2×60×8=576 距A点的最短距离:576-400=176
【84】20克糖放入100克水,三天后,糖水只有100克,浓度比原来高了百分之几(D)? A.15%;B.25%;C.1%;D.20%;
22
年兄资料库搜集整理
分析:答案D,浓度=浓质/浓液,而开始为:20/120=1/6.三天后为,20/100=1/5,浓度比原来高了:(1/5-1/6)/(1/6)=1/5=20%
【85】有红、黄、蓝、白珠子各10粒,装在一个袋子里,为了保证摸出的珠子有两粒颜色相同,应至少摸出几粒
分析:四次分别摸出不同的珠子,则下一次,不管摸出什么颜色,都能保证有两颗珠子颜色相同.4+1=5
【86】有一筐苹果,把他们三等分后还剩下2个苹果;取出其中两份,将它们三等分后还剩2个;然后再取出其中两份,又将这两份三等分后还剩下2个,问这筐苹果至少有几个?
分析:23个 。因为奇数+奇数=偶数、偶数+偶数=偶数,所以第一次\取出其中两份\的和一定为偶数,则第二次\取出其中两份\的和也一定是偶数。题目要求\至少\,所以第二次\取出其中两份\的和为8(因为该数三等分后还余2,并且该数还要为偶数)。第一次3等分:7, 7, 7,余2;第二次14个3等分:4, 4, 4,余2人;第三次8个3等分:2, 2, 2,最后余2.
【87】1-1000数中,除去平方数和立方数还有几个数?
分析:1000里最大的平方数是:31,1000里最大的立方数是:10,1000-31-10+3=962,3代表1,4,9的三次方数和1,8,27的平方相同
【88】从12点整开始,(包括12点)过12个小时,分针和时针重合( )次? A,11;B,12;C,13;D,14;
分析:答案B,追击问题变形。一分钟分针走6度,一分钟时针走1/2度=>一分钟分针时针速度差为11/2度,分针时针重合时=>分针走的路程一定超过时针一整圈,令除了开始的12点外,分针时针重合n次=>360×n/(11/2)=12×60=>n=11,综上,共重合11+1=12次
23
年兄资料库搜集整理
【89】一个三位数除以9余7,除以5余2 ,除以4余3,这样的三位楼共有: A.5个;B.6个;C.7个;D.8个
分析:答案A ,通过后两个推出,尾数是7的数同时满足后两个。那么,加上第一个条件,最小的尾数是7、又能满足上面的数是187=(20×9+7)。由此可知367=40×9+7,657=60×9+7.....共5个。在说详细点:1个数能同时除以9,5,4最小的可能是4×5×9=180,那么个位是几才能满足要求呢,只有7,也就是说是187,那么下一个呢?就是180×2+7=367,180×3+7=367,依次类推…… 【90】19981999+19991998的尾数是: A.3;B.6;C.7;D.9;
分析:答案A ,主要看末尾,81=8,82=4,83=2,84=6然后又是8了,四个一循环,1999/4余3,故末尾是2,同理19991998的尾数是1,2+1=3
【91】两个相同的瓶子装满盐水溶液,一个瓶子中盐和水的比例是3∶1,另一个瓶子中盐和水的比例是4∶1,若把两瓶盐水溶液混合,则混合液中盐和水的比例是( )。 A.31∶9;B.4∶55;C.31∶40;D.5∶4
分析:答案A ,设瓶子体积为 20,两瓶混和后 盐 = 15 + 16 = 31,水 = 5 + 4 = 9。 【92】将5封信投入3个邮筒,不同的投法共有( )。
分析:5封信投入3个信箱=>每封信面对3个邮箱,都会有3种选择,且每次投信独立的、不互相影响的=>根据排列组合分部相乘原理=>C(1,3)×C(1,3) ×C(1,3) ×C(1,3) ×C(1,3)=3×3×3×3×3=35
【93】甲、乙两车分别从A、B两地同时出发相向而行,6小时后相遇在C点,如果甲车速度不变,乙车每小时多行5千米,且两车还从A、B两地同时出发相向而行,则相遇地点距C点12千米;如果乙车速度不变,甲车每小时多行5千米,且两车还从A、B两地同时出发相向而行,则相遇地点距C点16千米,甲车原来每小时行多少千米?()
24
年兄资料库搜集整理
A. 20;B. 40;C. 10;D. 30;
分析:答案D ,甲速度x,乙速度y,(6x-12)(y+5)=(6y+12)x,(6x+16)y=(6y-16)(x+5),x=30。其中:(6x-12)/x=(6y+12)/(y+5) 相向而行,时间相等,(6y-16)/y=(6x+16)/(x+5) 相向而行,时间相等,6x 为AC距离 6y 为BC距离
【94】A、B是圆的一条直径的两端,小张在A点,小王在B点,同时出发逆时针而行,第一周内,他们在C点第一次相遇,在D点第二次相遇。已知C点离A点80米,D点离B点60米。求这个圆的周长。( ) A.540;B.400;C.360;D.180
分析:选C,从一开始运动到第一次相遇,小张行了80米,小王行了“半个圆周长+80”米,也就是在相同的时间内,小王比小张多行了半个圆周长,然后,小张、小王又从C点同时开始前进,因为小王的速度比小张快,要第二次再相遇,只能是小王沿圆周比小张多跑一圈。从第一次相遇到第二次相遇小王比小张多走的路程(一个圆周长)是从开始到第一次相遇小王比小张多走的路程(半个圆周长)的2倍。也就是,前者所花的时间是后者的2倍。对于小张来说,从一开始到第一次相遇行了80米,从第一次相遇到第二次相遇就应该行160米,一共行了240米。这样就可以知道半个圆周长是180(=240-60)米。一个圆周长360米。
【95】从3、5、7、11四个数中任取两个数相乘,可以得到多少的不相等的积() A.5;B.4;C.6;D.7
分析:选C,从3、5、7、11四个数中任取两个数相乘,共有C(2,4)=6种取法,分别计算,发现6种情况各不相同。
【96】分针走100圈,时针走多少圈() A.1;B.2;C.25/3;D.3/4
25