11.已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.(Ⅰ)如图①,当直线l与⊙O相切于点C时,若∠DAC=30°,求∠BAC的大小;(Ⅱ)如图②,当直线l与⊙O相交于点E、F时,若∠DAE=18°,求∠BAF的大小.12.已知:AB是⊙O的直径,点P在线段AB的延长线上,BP=OB=2,点Q在⊙O上,连接PQ.(1)如图①,线段PQ所在的直线与⊙O相切,求线段PQ的长;(2)如图②,线段PQ与⊙O还有一个公共点C,且PC=CQ,连接OQ,AC交于点D.①判断OQ与AC的位置关系,并说明理由;②求线段PQ的长.第6页共17页13.如图,电信部门计划修建一条连接B、C两地电缆,测量人员在山脚A处测得B、C两处的仰角分别是37°和45°,在B处测得C处的仰角为67°.已知C地比A地髙330米(图中各点均在同一平面内),求电缆BC长至少多少米?(精确到米,参考数据:sin37°≈,tan37°≈,sin67°≈,tan67°≈)14.中学生上学带手机的现象越来越受到社会的关注,为此媒体记者随机调查了某校若干名学生上学带手机的目的,分为四种类型:A接听电话;B收发短信;C查阅资料;D游戏聊天.并将调查结果绘制成图1和图2的统计图(不完整),请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;(2)将图1、图2补充完整;(3)现有4名学生,其中A类两名,B类两名,从中任选2名学生,求这两名学生为同一类型的概率(用列表法或树状图法).第7页共17页15.如图,在平面直角坐标系中,边长为1的正方形ABCD的顶点A在直线y=2x+4上,点B在第2
二象限,C,D两点均在x轴上,且点C在点D的左侧,抛物线y=﹣(x﹣m)+n的顶点P在直线y=2x+4上运动,且这条抛物线交y轴于点E.(1)写出A,C两点的坐标;2
(2)当抛物线y=﹣(x﹣m)+n经过点C时,求抛物线所对应的函数表达式;(3)当点E在AC所在直线上时,求m的值;(4)当点E在x轴上方时,连接CE,DE,当△CDE的面积随m的增大而增大时,直接写出m的取值范围.16.如图,抛物线y=-x+2x+3与x轴相交于A、B两点,与y轴交于点C,顶点为D,抛物线的对称轴DF与BC相交于点E,与x轴相交于点F.(1)求线段DE的长;(2)设过E的直线与抛物线相交于点M(x1,y1),N(x2,y2),试判断当|x1-x2|的值最小时,直线MN与x轴的位置关系,并说明理由;(3)设P为x轴上的一点,∠DAO+∠DPO=∠α,当tan∠α=4时,求点P的坐标.2
第8页共17页参考答案1.2.解:3.解:(1)将点A(1,0),点B(0,2),代入y=mx+b,∴b=2,m=﹣2,∴y=﹣2x+2;∵过点C作CD⊥x轴,∵线段AB绕点A顺时针旋转90°得到线段AC,∴△ABO≌△CAD(AAS),∴AD=AB=2,CD=OA=1,∴C(3,1),∴k=3,∴y=;(2)设与AB平行的直线y=﹣2x+h,联立﹣2x+b=,∴﹣2x+bx﹣3=0,当△=b﹣24=0时,b=∴P(,);2
2
,此时点P到直线AB距离最短;第9页共17页4.解:(1)由点A(,4),B(3,m)在反比例函数y=(x>0)图象上∴4=∴n=6∴反比例函数的解析式为y=(x>0)将点B(3,m)代入y=(x>0)得m=2∴B(3,2)设直线AB的表达式为y=kx+b∴解得∴直线AB的表达式为y=﹣;(2)由点A、B坐标得AC=4,点B到AC的距离为3﹣=∴S1=×4×=3设AB与y轴的交点为E,可得E(0,6),如图:∴DE=6﹣1=5由点A(,4),B(3,2)知点A,B到DE的距离分别为,3∴S2=S△BDE﹣S△ACD=×5×3﹣×5×=∴S2﹣S1=﹣3=.5.解:(1)证明:如图(1),∵AE是∠BAD的平分线,∴∠BAF=∠DAF,∵在平行四边形ABCD中,∴AB∥DF,AD∥BC,∴∠BAF=∠F,∠DAF=∠CEF,∴∠F=∠DAF=∠CEF,∴CE=FC;(2)解:四边形ABFC是矩形,理由:如图(2),∵∠B=60°,AD∥BC,∴∠BAC=120°,∵∠BAF=∠DAF,∴∠BAF=60°,则△ABE是等边三角形,第10页共17页