好文档 - 专业文书写作范文服务资料分享网站

弹簧力学性能

天下 分享 时间: 加入收藏 我要投稿 点赞

弹簧钢丝和弹性合金丝(上)

东北特殊钢集团大连钢丝制品公司 徐效谦

弹性材料是机械和仪表制造业广泛采用的制作各种零件和元件的基础材料,它在各类机械和仪表中的主要作用有:通过变形来吸收振动和冲击能量,缓和机械或零部件的震动和冲击;利用自身形变时所储存的能量来控制机械或零部件的运动;实现介质隔离、密封、软轴连接等功能。还可以利用弹性材料的弹性、耐蚀性、导磁、导电性等物理特性,制成仪器、仪表元件,将压力、张力、温度等物理量转换成位移量,以便对这些物理量进行测量或控制。 1 弹性材料的分类 按化学成分分类

弹性材料可分为:碳素弹簧钢、合金弹簧钢、不锈弹簧钢、铁基弹性合金、镍基弹性合金、钴基弹性合金等。 按使用特性分类

根据弹性材料使用特性,可作如下分类: 1.2.1 通用弹簧钢

(1)形变强化弹簧钢:碳素弹簧钢丝。 (2)马氏体强化弹簧钢:油淬火回火钢丝。 (3)综合强化弹簧钢:沉淀硬化不锈钢丝 1.2.2 弹性合金 (1)耐蚀高弹性合金 (2)高温高弹性合金 (3)恒弹性合金

(4)具有特殊机械性能、物理性能的弹性合金 2 弹簧钢和弹性合金的主要性能指标 弹性模量

钢丝在拉力作用下产生变形,当拉力不超过一定值时,变形大小与外力成正比,通常称为虎克定律。公式如下: ε=σ/E

式中 ε— 应变(变形大小)

σ— 应力(外力大小) E — 拉伸弹性模量

拉伸弹性模量(又称为杨氏弹性模量或弹性模量)是衡量金属材料产生弹性变形难易程度的指标,不同牌号弹性模量各不相同,同一牌号的弹性模量基本是一个常数。

工程上除表示金属抵抗拉力变形能力的弹性模量外(E),还经常用到表示金属抵抗切应力变形能力的切变弹性模量(G)。

拉伸弹性模量与切变弹性模量之间有一固定关系:G =

E,μ称为泊桑比,同一牌号的泊桑

2(1??)比是一定数,弹性材料的μ值一般在1/3~1/4之间。

4GdE和G是弹簧设计时两个重要技术参数(拉压螺旋弹簧的轴向载荷力P=,扭转螺旋弹簧的刚38nDEd4

度P=)。冷拉碳素弹簧钢丝和合金弹簧钢丝的E和G值如表1。

64nD

表1 弹簧钢的E和G值

材 料 名 称 冷拉碳素弹簧(65Mn,70) 冷拉碳素弹簧(T8MnA,T9A) 50CrV 55CrSi 60Si2MnA 60Si2CrVA 30W4Cr2V 1Cr13Ni2 (414) 3Cr13 (420) 1Cr17Ni2(431) 1Cr18Ni9(302) 0Cr17Ni7Al E (Mpa) 196500~198600 193000~203400 196500 203400 200000 205800 205800 200000 200000 206000 193000 203400 G (Mpa) 78600~80670 80000~82700 77200 77200 74100 77200 77200 77300 68950 75840 弹性极限和屈服极限

钢丝在弹性范围内承受外力产生一定变形,外力消除钢丝恢复原状,钢丝不产生永久残余变形所能承受的最大应力称为弹性极限。

弹性极限高的钢丝弹力大,根据弹簧使用状态,影响弹力的弹性极限可分为扭转弹性极限(τe)和拉伸弹性极限(Re)两种。压缩拉伸螺旋弹簧用到扭转弹性极限,弹簧垫和板弹簧用到拉伸弹性极限。

弹簧一项重要功能是吸收和储存能量,吸收和储存的能量称为变形能。弹簧的变形能与弹性极限的平方成正比(U=2τe/2G或U=2Re/2E),所以说弹性极限对弹簧特性有很大的影响。

钢丝在拉伸试验中很难精确地测出其弹性极限,一般用屈服极限衡量弹性极限。

屈服极限(ReL)指钢丝在拉伸过程中开始产生不可恢复的塑性变形时的最小应力。碳素弹簧钢丝屈服点非常不明显,通常取钢丝产生%的残余变形时的应力作为屈服极限()。

钢丝在退火或固溶条件下,弹性极限和屈服极限很接近,经大减面率拉拔后或经淬火后的钢丝,由于内应力作用往往有很高的屈服极限,但弹簧极限却很低。只有经消除应力退火或回火处理后的钢丝弹性极限才接近屈服极限。

弹性极限一般与抗拉强度有一定比例关系。常见弹簧钢的拉伸弹性极限和扭转弹性极限如表2,

表2 弹性极限为抗拉强度的百分比 ( % )

材 料 名 称 冷拉碳素弹簧钢丝 油淬火回火碳素弹簧钢丝 油淬火回火65Mn 50CrV(油淬火回火) 55CrSi(油淬火回火) 60Si2MnA 拉伸弹性极限 60~75 80~90 85~90 88~93 88~93 78~86 扭转弹性极限 45~55 45~55 50~60 65~75 65~75 55~65 2

2

1Cr13Ni2(414) 3Cr13 (420) 1Cr17Ni2(431) 1Cr18Ni9(302) 0Cr17Ni7Al 65~70 65~75 72~76 65~75 75~85 42~55 45~55 50~55 45~55 55~60 抗拉强度和屈服比

抗拉强度是衡量钢丝承受拉力能力的指标,拉力试验中以钢丝拉断时最大拉力除以钢丝截面积来表示。抗拉强度是弹簧钢丝最重要指标。

屈服极限与抗拉强度的比值,称为屈强比,也是衡量弹簧钢丝质量水平的一项重要指标。碳素弹簧钢丝和合金弹簧钢退火状态下的屈强比大约为50%,奥氏体不锈钢固溶状态下的屈强比一般不超过40%。

冷拉过程中钢丝屈服极限和抗拉强度同时上升,但屈服极限上升幅度远大于抗拉强度,碳素和不锈弹簧钢丝的屈服比高达90%以上。合金弹簧钢丝淬火回火后的屈服比也达到80~90%。 疲劳寿命和疲劳极限

弹性元件在交变载荷作用下,经若干次动作产生裂纹叫疲劳断裂。弹性元件断裂时完成动作次数多,叫疲劳寿命好,反之叫疲劳寿命差。

实际上弹性元件疲劳寿命与载荷的大小、方向、随时间变化规律有很大关系。在载荷大、振幅大条件下,弹性元件断裂的循环次数就降低,工程中用疲劳极限来衡量弹簧钢丝的疲劳性能好坏,一般将经10次循环动作,不产生断裂时的最大负载应力叫疲劳极限。

弹簧钢丝的疲劳极限与钢丝的屈服极限成正比,要提高疲劳极限就应设法提高钢丝屈服强度,或提高屈强比。

介绍几个预测疲劳寿命的经验公式:

σ-1= σ-1p= τ-1=

式中:σ-1 反复弯曲疲劳极限

σ-1p 反复拉压疲劳极限 τ-1 反复扭转疲劳极限

疲劳断裂往往先从钢丝表面形成,并向内部传播,表面质量非常重要。钢丝表面裂纹、划伤、边刺、斑疤、麻点、锈蚀坑和锈蚀皮都会造成钢丝疲劳极限下降。

提高表面光洁度和采用工艺措施提高钢丝表面强度是提高疲劳极限的有效方法。因此对疲劳寿命要求高的用户,应推荐选用磨光钢丝。弹簧厂对弹簧表面进行渗氮处理、喷丸处理和压光处理,目的是通过提高表面强度来提高疲劳极限。

钢丝表面脱碳造成表面强度降低,很薄的脱碳层也会导致疲劳极限的急剧下降。碳素弹簧钢丝采用连续炉热处理,在炉时间为数分钟,产生脱碳的可能性很小。合金弹簧采用周期炉热处理,在炉时间以小时计算,防止脱碳是工艺控制的重点。 蠕变和松弛

7

在弹簧的两端施加一定的拉应力(低于弹性极限),弹簧产生一定的伸长,但随着时间加长,伸长量缓慢增加,叫做蠕变。钢丝蠕变往往经历从缓慢变化到加速变化,直至断裂的过程。钢丝蠕变在常温下不明显,但随温度升高而加速。工程上用弹簧在一定温度,持续一段时间,产生一定量变形所施加的应力来定义蠕变极限。如?0.002/10000=A表示弹簧在温度200℃,持续一小时,产生%形变,需施加A(MPa)的应力。

使弹簧产生一定量的变形,就产生一定量的应力,但随着时间的持续,应力逐渐减小,叫做应力松弛。例如用螺栓压紧个零件,需转动螺帽使螺栓拉长,产生一定的弹性变形,形成相应的压应力。在较高温度下,经过一段时间后,虽然螺栓位置不变,但压应力逐渐减小,就叫应力松弛。松弛是随时间持续部分弹性变形转化为塑性变形造成的。

松弛有几种表示方法:

松弛率:经过一段时间,应力减小值与原始应力之比,即(Ro-Rn/Ro)×100%。 残余应力:一般指10小时后的残余应力Rr,Rr越高说明材料抗松弛性能越好。

蠕变和松弛都是衡量弹簧稳定性的指标,共同特点是随温度升高、时间加长,表现的越加明显。 影响蠕变性能的因素有:①钢中气体和夹杂物含量:含量低蠕变小。②晶粒度:粗晶粒度钢有较高的抗蠕变能力。③合金元素的固溶强化作用:采用少量多元合金可提高抗蠕变性能。④第二相弥散析出可提高抗蠕变性能。

松弛是弹性滞后的一种反映。主要取决于钢的化学成分和组织结构。 弹性减退

弹性减退(简称弹减性)是指室温下,弹性材料在交变动载荷或静载荷作用下,发生塑性变形的一种力学现象。弹减性与蠕变和松驰的差别在于:蠕变是指在恒定应力作用下,应变缓慢增加;松弛是指恒应变条件下的应力自发下降;弹减性是指交变载荷下的应力减退。因此可以说,蠕变和松驰是特定条件下的弹性减退,三者反映出材料的同一本质特性。大多数弹簧工作时应力和应变均发生变化,因此弹性减退是弹簧使用过程中最常见现象。

评定弹性减退的实验方法有两类:成品弹簧直接评定和试样间接评定。以螺旋弹簧为例,检测弹减性的步骤为:①先施加载荷P,将弹簧压至最低高度Hmin(约为弹簧自由高度H0的1/4)后卸载,测得自由高度H1;②将弹簧压缩到某一规定高度H2(约为H0的2/3),记下所需载荷P1;③卸掉弹簧载荷P1后,再重新加载荷,将弹簧压缩至最低高度Hmin,保持较长时间,如72h或更长时间(根据材料的弹减抗力、弹簧参数及Hmin等因素确定);④卸载后测定此时弹簧的自由高度H3;⑤最后再将弹簧压缩至规定高度H2,记下所需载荷P2;⑥计算出弹簧自由高度的损失ΔH和承载能力降低值ΔP:

ΔH=H1-H3 ΔP=P1-P2

根据ΔH和ΔP的大小判定弹性材料的弹减抗力,ΔH和ΔP越小,弹减抗力越大。此外,成品弹簧弹减性检测方法还有:动态松驰试验法和螺旋弹簧剪切试验法等。试样间接评定基本采用金属拉伸试样,检测方法有:拉伸松驰试验法、鲍辛格(Baushinger)扭转试验法、鲍辛格拉、压试验法和扭转蠕变试验法。一般说来,弹簧实物检测接近使用实际,检测结果直观、实用,但不同形状弹簧检测结果没有可比性。试样检测结果一般为一组数据或曲线图,能反映出材料的弹减性、有可比性,但检

5

200测步骤复杂、周期长、需要配置专用的检测设备。 弹性的时间效应

除蠕变、松弛和弹性减退性能外,反映弹性时间效应的技术指标有: (1)弹性滞后

弹性材料在弹性变形范围内,反复加载和卸载,应变总是落后于应力变化,叫弹性滞后。对于

仪表用弹性元件(如张力丝、膜盒),弹性滞后可能导致仪表给出不同的读数,所以要求弹性滞后越小越好。

(2)弹性后效

弹性元件加载荷后产生应变εe(见图1),载荷持续一段时间后应变量增加εt,则弹性后效为Hi。

Hi=εt/(εe+εt)

加载时的Hi为正弹性后效,卸载时Hi为反弹性后效。测量弹性后效时,以加载和卸载10分钟时测量结果进行计算。碳素弹簧钢的弹性后效值高达30%,弹性合金3J53弹性后效值可低到%。 弹性的能量效应

弹性元件周期振动时,应变滞后于应力,使应力、应变曲线出现滞后环(图1)。滞后环所包围的面积等于振动一周消耗的能量,这些能量转化为热量散失,这种现象称为内耗或阻尼,用Q表示。它的倒数称为机械品质因数,用Q表示。在实际应用中,对金属材料的内耗特性有不同要求,用于减震的弹簧,要求材料有尽量能大的内耗值,以尽快减少共振时的应力幅度。用于滤波器中振子和音叉振荡器的弹性元件,要内耗越小越好,即机械品质因素越大越好。金属材料内耗主要取决于化

学成分及组织结构,但冷加工使内耗增加,退火使内耗降低。 图1单向循环载荷的弹性滞后环 弹性的温度效应

(1)最高使用温度

弹性材料必须在弹性极限范围内使用,当使用应力超过弹性极限时,弹簧失效。金属和合金的抗拉强度和弹性极限随着温度上升而下降,同时随着温度的上升,材料的蠕变或松弛加大,弹簧变形加大,弹性减退。当温度高到一定限度,弹簧就无法使用了,所以弹性材料都存在着最高允许使用温度的限制。弹簧钢丝和弹性合金丝的最高使用温度主要取决于材料的化学成分,其次是显微组织结构。常用弹性材料的最高使用温度如表3。

表3 常用弹性材料的最高使用温度

牌 号 冷拉碳素弹簧钢丝 油淬火回火碳素弹簧钢丝 50CrVA 55CrSiA 60Si2MnA 60Si2CrVA 65Si2MnWA 45CrMoVA 最高使用温度/℃ 120~160 175 200~220 245~250 250 350 350 450 牌 号 30W4Cr2V 3Cr2W8V 3Cr13 1Cr18Ni9(302) 0Cr17Ni7Al(17-7PH) 0Cr15Ni7Mo2Al(PH15-7Mo) 0Cr15Ni25Ti2MoVB(GH2132) 0Cr15Ni35W2Mo2Ti2Al2B(GH2135) 最高使用温度/℃ 500 350~500 315 300 340 430 500~550 550~600 -1

弹簧力学性能

弹簧钢丝和弹性合金丝(上)东北特殊钢集团大连钢丝制品公司徐效谦弹性材料是机械和仪表制造业广泛采用的制作各种零件和元件的基础材料,它在各类机械和仪表中的主要作用有:通过变形来吸收振动和冲击能量,缓和机械或零部件的震动和冲击;利用自身形变时所储存的能量来控制机械或零部件的运动;实现介质隔离、密封、软轴连接等功能。还可以利用弹性材料的弹性、耐蚀性、导磁、导电性等物
推荐度:
点击下载文档文档为doc格式
5gbyp0sr1q6tck19hpxv8jj329nz0t003ou
领取福利

微信扫码领取福利

微信扫码分享