(3)甲、乙两组成绩的中位数都是80分,甲组成绩在中位数以上的有33人,乙组成绩在中位数以上的有26人,从这一角度看甲组的成绩总体要好。
(4)从成绩统计表看,甲组成绩高于80分的人数为20人,乙组成绩高于80分的人数为24人,所以,乙组成绩集中在高分段的人数多,同时,乙组得满分的人数比甲组得满分的人数多6人,从这一角度看,乙组的成绩较好。
[规律总结]明确方差或标准差是衡量一组数据的波动的大小的,恰当选用方差的三个计算公式,应抓住三个公式的特征,根据题中数据的特点选用计算公式。
例3、到从某学校3600人中抽出50名男生,取得他们的身高(单位cm),数据如下:181 181 179 177 177 177 176 175 175 175 175 174 174 174 174 173 173 173 173 172 172 172 172 172 171 171 171 170 170 169 l69 168 167 167 167 166 l66 l66 166 166 165 165 165 163 163 162 161 160 158 157
1、计算频率,并画出频率分布直方图
2、上指出身高在哪一组内的男学生人数所占的比最大
3.请估计这些初三男学生身高在166.5cm以下的约有多少人?
解:1、各组频率依次是:0.08,0.22,0.22,0.36,0.12
2、从频率分布表(或图)中,可见身高在171.5—176.5组内男学生人数所占的比最大。
3、这个地方男学生身高166.5侧以下的约为
3000?(0.08?0.22)?900(人)
[规律总结]要掌握获得一组数据的频率分布的五大步骤,掌握整理数据的步骤和方法。会对数据进行合理的分组。
几何部分
第一章:线段、角、相交线、平行线
知识点:
一、直线:直线是几何中不加定义的基本概念,直线的两大特征是“直”和“向两方无限延伸”。
二、直线的性质:经过两点有一条直线,并且只有一条直线,直线的这条性质是以公理的形式给出的,可简述为:过两点有且只有一条直线,两直线相交,只有一个交点。 三、射线:
1、射线的定义:直线上一点和它们的一旁的部分叫做射线。 2.射线的特征:“向一方无限延伸,它有一个端点。”
四、线段:
1、线段的定义:直线上两点和它之间的部分叫做线段,这两点叫做线段的端点。
2、线段的性质(公理):所有连接两点的线中,线段最短。 五、线段的中点:
1、定义如图1一1中,点B把线段AC分成两条相等的线段,点B叫做线段图1-1AC的中点。 2、表示法:
∵AB=BC
∴点 B为 AC的中点 或∵ AB= MAC
∴点 B为AC的中点,或∵AC=2AB,∴点B为AC的中点 反之也成立
∵点 B为AC的中点,∴AB=BC 或∵点B为AC的中点, ∴AB= AC 或∵点B为AC的中点, ∴AC=2BC
六、角
1、角的两种定义:一种是有公共端点的两条射线所组成的图形叫做角。要弄清定义中的两个重点①角是由两条射线组成的图形;②这两条射线必须有一个公共端点。另一种是一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。可以看出在起始位置的射线与
1212
终止位置的射线就形成了一个角。
2.角的平分线定义:一条射线把一个角分成两个相等的角, 这条射线叫做这个角的平分线。表示法有三种:如图1—2 (1)∠AOC=∠BOC
(2)∠AOB=2∠AOC= 2∠COB (3)∠AOC=∠COB=∠AOB
七、角的度量:度量角的大小,可用“度”作为度量单位。把一个圆周分成360等份,每一份叫做一度的角。1度=60分;1分=60秒。
八、角的分类:
(1)锐角:小于直角的角叫做锐角 (2)直角:平角的一半叫做直角 (3)钝角:大于直角而小于平角的角
(4)平角:把一条射线,绕着它的端点顺着一个方向旋转,当终止位置和起始位置成一直线时,所成的角叫做平角。
(5)周角:把一条射线,绕着它的端点顺着一个方向旋转,当终边和始边重合时,所成的角叫做周角。
(6)周角、平角、直角的关系是: l周角=2平角=4直角=360° 九、相关的角:
1、对顶角:一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。
2、互为补角:如果两个角的和是一个平角,这两个角做互为补
12
角。
3、互为余角:如果两个角的和是一个直角,这两个角叫做互为余角。
4、邻补角:有公共顶点,一条公共边,另两条边互为反向延长线的两个角做互为邻补角。
注意:互余、互补是指两个角的数量关系,与两个角的位置无关,而互为邻补角则要求两个角有特殊的位置关系。 十、角的性质 1、对顶角相等。
2、同角或等角的余角相等。 3、同角或等角的补角相等。 十一、相交线
1、斜线:两条直线相交不成直角时,其中一条直线叫做另一条直线的斜线。它们的交点叫做斜足。
2、两条直线互相垂直:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直。
3、垂线:当两条直线互相垂直时,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。 4、垂线的性质
(l)过一点有且只有一条直线与己知直线垂直。
(2)直线外一点与直线上各点连结的所有线段中,垂线段最短。简单说:垂线段最短。