好文档 - 专业文书写作范文服务资料分享网站

2020年中考数学总复习必考基础知识全套梳理提纲(精华版)

天下 分享 时间: 加入收藏 我要投稿 点赞

时快28千米,恰好在全程的处追上甲连。求乙连的行进速度及追上甲连的时间

分析:设乙连的速度为v千米/小时,追上甲连的时间为t小时,则甲连的速度为(v–28)千米/小时,这时乙连行了(t?)小时,其等量关系为:甲走的路程=乙走的路程=30

例3、某工厂原计划在规定期限内生产通讯设备60台支援抗洪,由于改进了操作技术;每天生产的台数比原计划多50%,结果提前2天完成任务,求改进操作技术后每天生产通讯设备多少台?

分析:设原计划每天生产通讯设备x台,则改进操作技术后每天生产x(1+0.5)台,等量关系为:原计划所用时间–改进技术后所用时间=2天 解:略

例4、某商厦今年一月份销售额为60万元,二月份由于种种原因,经营不善,销售额下降10%,以后经加强管理,又使月销售额上升,到四月份销售额增加到96万元,求三、四月份平均每月增长的百分率是多少?

分析:设三、四月份平均每月增长率为x%,二月份的销售额为60(1–10%)万元,三月份的销售额为二月份的(1+x)倍,四月份的销售额又是三月份的(1+x)倍,所以四月份的销售额为二月份的(1+x)2倍,等量关系为:四月份销售额为=96万元。解:略

例5、一年期定期储蓄年利率为2.25%,所得利息要交纳20%的利息税,例如存入一年期100元,到期储户纳税后所得到利息的计算

1374

公式为:

税后利息=100?2.25%?100?2.25%?20%?100?2.25%(1?20%) 已知某储户存下一笔一年期定期储蓄到期纳税后得到利息是450元,问该储户存入了多少本金?

分析:设存入x元本金,则一年期定期储蓄到期纳税后利息为2.25%(1-20%)x元,方程容易得出。

例6、某商场销售一批名牌衬衫,平均每天售出20件,每件盈利40元,为了扩大销售,增加盈利,减少库存,商场决定采取适当的降低成本措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。若商场平均每天要盈利1200元,每件衬衫应降价多少元?

分析:设每件衬衫应该降价x元,则每件衬衫的利润为(40-x)元,平均每天的销售量为(20+2x)件,由关系式:

总利润=每件的利润×售出商品的叫量,可列出方程 解:略

代数部分

第五章:不等式及不等式组

知识点:

一、不等式与不等式的性质

1、不等式:表示不等关系的式子。(表示不等关系的常用符号:≠,<,>)。 2、不等式的性质:

(l)不等式的两边都加上(或减去)同一个数,不等号方向不

改变,如a> b, c为实数?a+c>b+c

(2)不等式两边都乘以(或除以)同一个正数,不等号方向不变,如a>b, c>0?ac>bc。

(3)不等式两边都乘以(或除以)同一个负数,不等号方向改变,如a>b,c<0?ac<bc.

注:在不等式的两边都乘以(或除以)一个实数时,一定要养成好的习惯、就是先确定该数的数性(正数,零,负数)再确定不等号方向是否改变,不能像应用等式的性质那样随便,以防出错。 3、任意两个实数a,b的大小关系(三种):

(1)a – b >0? a>b (2)a – b=0?a=b (3)a–b<0?a<b 4、(1)a>b>0?a?b (2)a>b>0?a2?b2

二、不等式(组)的解、解集、解不等式

1、能使一个不等式(组)成立的未知数的一个值叫做这个不等式(组)的一个解。

不等式的所有解的集合,叫做这个不等式的解集。

不等式组中各个不等式的解集的公共部分叫做不等式组的解集。 2.求不等式(组)的解集的过程叫做解不等式(组)。 三、不等式(组)的类型及解法 1、一元一次不等式:

(l)概念:含有一个未知数并且含未知数的项的次数是一次的不等式,叫做一元一次不等式。

(2)解法:与解一元一次方程类似,但要特别注意当不等式的两边同乘以(或除以)一个负数时,不等号方向要改变。 2、一元一次不等式组:

(l)概念:含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组。

(2)解法:先求出各不等式的解集,再确定解集的公共部分。 注:求不等式组的解集一般借助数轴求解较方便。 例题:

方法1:利用不等式的基本性质 1、判断正误:

(1)若a>b,c为实数,则ac2>bc2; (2)若ac2>bc2,则a>b

分析:在(l)中,若c=0,则ac2=bc2; 在(2)中,因为”>”,所以。C≠0,否则应有ac2=bc2 故a>b 解:略

[规律总结]将不等式正确变形的关键是牢记不等式的三条基本性质,不等式的两边都乘以或除以含有字母的式子时,要对字母进行讨论。

方法2:特殊值法

例2、若a<b<0,那么下列各式成立的是( ) A、? B、ab<0 C、?1 D、?1

1a1babab

分析:使用直接解法解答常常费时间,又因为答案在一般情况下成立,当然特殊情况也成立,因此采用特殊值法。

解:根据a<b<0的条件,可取a= –2,b= –l,代入检验,易知?1,所以选D

[规律总结]此种方法常用于解选择题,学生知识有限,不能直接解答时使用特殊值法,既快,又能找到符合条件的答案。 方法3:类比法

例3、解下列一元一次不等式,并把解集在数轴上表示出来。 (1)8–2(x+2)<4x–2;(2)1?x?1x?1 ?2?23ab 分析:解一元一次不等式的步骤与解一元一次方程类似,主要步骤有去分母,去括号、移项、合并同类项,把系数化成1,需要注意的是,不等式的两边同时乘以或除以同一个负数,不等号要改变方向。解:略

[规律总结]解一元一次不等式与解一元一次方程的步骤类似,但要注意当不等式的两边都乘以或除以同一个负数时,不等号的方向必须改变,类比法解题,使学生容易理解新知识和掌握新知识。 方法4:数形结合法

?2(x?8)?10?4(x?3) 例4、求不等式组:?的非负整数解 ?x?16x?7??1?3?2 分析:要求一个不等式组的非负整数解,就应先求出不等式组的解集,再从解集中找出其中的非负整数解。解:略

2020年中考数学总复习必考基础知识全套梳理提纲(精华版)

时快28千米,恰好在全程的处追上甲连。求乙连的行进速度及追上甲连的时间分析:设乙连的速度为v千米/小时,追上甲连的时间为t小时,则甲连的速度为(v–28)千米/小时,这时乙连行了(t?)小时,其等量关系为:甲走的路程=乙走的路程=30例3、某工厂原计划在规定期限内生产通讯设备60台支援抗洪,由于改进了操作技术;每天生产的台数比原计划多50%,结
推荐度:
点击下载文档文档为doc格式
5g6xj3wftb4mu7526k929d31q9p6am00eag
领取福利

微信扫码领取福利

微信扫码分享