好文档 - 专业文书写作范文服务资料分享网站

2020年中考数学总复习必考基础知识全套梳理提纲(精华版)

天下 分享 时间: 加入收藏 我要投稿 点赞

说明:外分点分线段所得的两条线段,也就是这个点分别和线段的两个端点确定的线段。

三、相似三角形

1、相似三角形:两个对应角相等,对应边成比例的三角形叫做相似三角形。

说明:证两个三角形相似时和证两个三角形全等一样,通常把表示对应顶点的字母写在对应的位置上,这样便于找出相似三角形的对应角和对应边。

2、相似比:相似三角形对应边的比k,叫做相似比(或叫做相似系数)。

3、相似三角形的基本定理:平分于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似。 说明:这个定理反映了相似三角形的存在性,所以有的书把它叫做相似三角形的存在定理,它是证明三角形相似的判定定理的理论基础。

4、三角形相似的判定定理:

(1)判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么就两个三角形相似。可简单说成:两角对应相等,两三角形相似。

(2)判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似,可简单说成:两边对应成比例且夹角相等,两三角形相似。

(3)判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简单说成:三边对应成比例,两三角形相似。

(4)直角三角形相似的判定定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。

说明:以上四个判定定理不难证明,以下判定三角形相似的命题是正确的,在解题时,也可以用它们来判定两个三角形的相似。 第一:顶角(或底角)相等的两个等腰三角形相似。 第二:腰和底对应成比例的两个等腰三角形相似。 第三:有一个锐角相等的两个直角三角形相似。

第四:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。

第五:如果一个三角形的两边和其中一边上的中线与另一个三角形的两边和其中一边上的中线对应成比例,那么这两个三角形.相似。 5、相似三角形的性质:

(1)相似三角形性质1:相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比。

(2)相似三角形性质2:相似三角形周长的比等于相似比。 说明:以上两个性质简单记为:相似三角形对应线段的比等于相似比。

(3)相似三角形面积的比等于相似比的平方。

说明:两个三角形相似,根据定义可知它们具有对应角相等、对应边成比例这个性质。

6、介绍有特点的两个三角形

(1)共边三角形指有一条公共边的两个三角形叫做共边三角形。

(2)共角三角形有一个角相等或互补的两个三角形叫做共角三角形,如图4-6

(3)公边共角有一个公共角,而且还有一条公共边的两个三角形叫做公边共角三角形。

说明:具有公边共角的两个三角形相似,则公边的平方等于叠在一条直线上的两边的乘积:如图4—7若△ACD∽△ABC,则AC2=AD·AB 例题:

abbca?b?,?.求:b?c的值. 例1、已知:2354分析:已知等比条件时常有以下几种求值方法: (1)设比值为k; (2)比例的基本性质;

(3)方程的思想,用其中一个字母表示其他字母.

abbc?及?2354,得a:b=2:3,b:c=5:4,即a:b:c=10:15:12.设解:由

a=10k,b=15k,c=12k, 则(a+b):(b-c)=25:3.

例2 已知:如图5-126(a),在梯形ABCD中,AD∥BC,对角线交于O点,过O作EF∥BC,分别交AB,DC于E,F.求证:

112??(1)OE=OF;(2)ADBCEF;(3)若MN为梯形中位线,求证AF∥MC.

分析:

(1)利用比例证明两线段相等的方法.

ac?①若dd,a=c(或b=d或a=b),则b=d(或a=c或c=d);

ab?da,则a=b(只适用于线段,对实数不成立); ②若

aca'c'?'?'dddd,a=a′,b=b′,c=c′,则d=d′. ③若,

(2)利用平行线证明比例式及换中间比的方法.

112111????(3)证明ADBCEF时,可将其转化为“abc”类型后: cc??1ab①化为直接求出各比值,或可用中间比求出各比值再相加,

证明比值的和为1;

②直接通分或移项转化为证明四条线段成比例.

(4)可用分析法证明第(3)题,并延长两腰将梯形问题转化为三角形问题.

延长BA,CD交于S,AF∥MC

∴ AF∥MC成立.

(5)用运动的观点将问题进行推广.

若直线EF平行移动后不过点O,分别交AB,BD,AC,CD于E,O1,O2,F,如图5-126(b),O1F 与O2F是否相等?为什么?

(6)其它常用的推广问题的方法有:类比、从特殊到一般等 例3 已知:如图5-127,在ΔABC中,AB=AC,D为BC中点,DE⊥AC于E,F为DE中点,BE交AD于N,AF交BE于M.求证:AF⊥BE. 分析:

(1)分解基本图形探求解题思路.

(2)总结利用相似三角形的性质证明两角相等,进一步证明两直线位置关系(平行、垂直等)

ADDE?DCCF 的方法,利用ΔADE∽ΔDCE得到

2020年中考数学总复习必考基础知识全套梳理提纲(精华版)

说明:外分点分线段所得的两条线段,也就是这个点分别和线段的两个端点确定的线段。三、相似三角形1、相似三角形:两个对应角相等,对应边成比例的三角形叫做相似三角形。说明:证两个三角形相似时和证两个三角形全等一样,通常把表示对应顶点的字母写在对应的位置上,这样便于找出相似三角形的对应角和对应边。
推荐度:
点击下载文档文档为doc格式
5g6xj3wftb4mu7526k929d31q9p6am00eag
领取福利

微信扫码领取福利

微信扫码分享