第一章
思考题
1. 试用简练的语言说明导热、对流换热及辐射换热三种热传递方式之间的联系和区别。
答:导热和对流的区别在于:物体内部依靠微观粒子的热运动而产生的热量传递现象,称为导热;对流则是流体各部分之间发生宏观相对位移及冷热流体的相互掺混。联系是:在发生对流换热的同时必然伴生有导热。
导热、对流这两种热量传递方式,只有在物质存在的条件下才能实现,而辐射可以在真空中传播,辐射换热时不仅有能
量的转移还伴有能量形式的转换。
2. 以热流密度表示的傅立叶定律、牛顿冷却公式及斯忒藩-玻耳兹曼定律是应当熟记的传热学公式。试写
出这三个公式并说明其中每一个符号及其意义。
答:① 傅立叶定律:
“-”表示热量传递的方向是沿着温度降低的方向。
② 牛顿冷却公式:
q???dtdtdx,其中,q-热流密度;?-导热系数;dx-沿x方向的温度变化率,
q?h(tw?tf),其中,q-热流密度;h-表面传热系数;tw-固体表面温度;
tf-流体的温度。
4q??T③ 斯忒藩-玻耳兹曼定律:,其中,q-热流密度;?-斯忒藩-玻耳兹曼常数;T-辐
射物体的热力学温度。
3. 导热系数、表面传热系数及传热系数的单位各是什么?哪些是物性参数,哪些与过程有关?
答:① 导热系数的单位是:W/(m.K);② 表面传热系数的单位是:W/(m2.K);③ 传热系数的单位是:W/(m2.K)。这三个参数中,只有导热系数是物性参数,其它均与过程有关。
4. 当热量从壁面一侧的流体穿过壁面传给另一侧的流体时,冷、热流体之间的换热量可以通过其中任何一
个环节来计算(过程是稳态的),但本章中又引入了传热方程式,并说它是“换热器热工计算的基本公式”。试分析引入传热方程式的工程实用意义。
答:因为在许多工业换热设备中,进行热量交换的冷、热流体也常处于固体壁面的两侧,是工程技术中经常遇到的一种典型热量传递过程。
5. 用铝制的水壶烧开水时,尽管炉火很旺,但水壶仍然安然无恙。而一旦壶内的水烧干后,水壶很快就烧
坏。试从传热学的观点分析这一现象。
答:当壶内有水时,可以对壶底进行很好的冷却(水对壶底的对流换热系数大),壶底的热量被很快传走而不至于温度升得很高;当没有水时,和壶底发生对流换热的是气体,因为气体发生对流换热的表面换热系数小,壶底的热量不能很快被传走,故此壶底升温很快,容易被烧坏。
6. 用一只手握住盛有热水的杯子,另一只手用筷子快速搅拌热水,握杯子的手会显著地感到热。试分析其
原因。
答:当没有搅拌时,杯内的水的流速几乎为零,杯内的水和杯壁之间为自然对流换热,自热对流换热的表面传热系数小,当快速搅拌时,杯内的水和杯壁之间为强制对流换热,表面传热系数大,热水有更多的热量被传递到杯壁的外侧,因此会显著地感觉到热。
7. 什么是串联热阻叠加原则,它在什么前提下成立?以固体中的导热为例,试讨论有哪些情况可能使热量
传递方向上不同截面的热流量不相等。
答:在一个串联的热量传递过程中,如果通过每个环节的热流量都相同,则各串联环节的总热阻等于各串联环节热阻的和。例如:三块无限大平板叠加构成的平壁。例如通过圆筒壁,对于各个传热环节的传热面积不相等,可能造成热量传递方向上不同截面的热流量不相等。
8.有两个外形相同的保温杯A与B,注入同样温度、同样体积的热水后不久,A杯的外表面就可以感觉到热,而B杯的外表面则感觉不到温度的变化,试问哪个保温杯的质量较好?
答:B:杯子的保温质量好。因为保温好的杯子热量从杯子内部传出的热量少,经外部散热以后,温度变化很小,因此几乎感觉不到热。 能量平衡分析
1-1夏天的早晨,一个大学生离开宿舍时的温度为20℃。他希望晚上回到房间时的温度能够低一些,于是早上离开时紧闭门窗,并打开了一个功率为15W的电风扇,该房间的长、宽、高分别为5m、3m、2.5m。如果该大学生10h以后回来,试估算房间的平均温度是多少?
解:因关闭门窗户后,相当于隔绝了房间内外的热交换,但是电风扇要在房间内做工产生热量:为
15?10?3600=540000J全部被房间的空气吸收而升温,空气在20℃时的比热为:1.005KJ/Kg.K,密度为
540000?10?3?t??11.893
5?3?2.5?1.205?1.0051.205Kg/m,所以
当他回来时房间的温度近似为32℃。
1-2理发吹风器的结构示意图如附图所示,风道的流通面积A2?60cm,进入吹风器的空气压力
2p?100kPa,温度t1?25℃。要求吹风器出口的空气温度t2?47℃,试确定流过吹风器的空气的质量流
量以及吹风器出口的空气平均速度。电加热器的功率为1500W。
解:
1-3淋浴器的喷头正常工作时的供水量一般为每分钟1000cm。冷水通过电热器从15℃被加热到43℃。试问电热器的加热功率是多少?为了节省能源,有人提出可以将用过后的热水(温度为38℃)送入一个换热器去加热进入淋浴器的冷水。如果该换热器能将冷水加热到27℃,试计算采用余热回收换热器后洗澡15min可以节省多少能源?
解:电热器的加热功率: P?3Q??cm?t?4.18?103?103?1000?10?6?(43?15)??1950.6W?1.95kW
6015分钟可节省的能量:
Q?cm?t?4.18?103?103?1000?10?6?15?(27?15)?752400J?752.4kJ
1-4对于附图所示的两种水平夹层,试分析冷、热表面间热量交换的方式有何不同?如果要通过实验来测定夹层中流体的导热系数,应采用哪一种布置?
解:(a)中热量交换的方式主要为热传导。
(b)热量交换的方式主要有热传导和自然对流。
所以如果要通过实验来测定夹层中流体的导热系数,应采用(a)布置。
1-5 一个内部发热的圆球悬挂于室内,对于附图所示的三种情况,试分析:(1)圆球表面散热的方式;(2)圆球表面与空气之间的换热方式。 解:(2)圆球为表面传热方式散热。 (1)换热方式:(a)自然对流换热;(b)自然对流与强制对流换热相当的过渡流传热;(c)强制对流换热;
1-6 一宇宙飞船的外形示于附图中,其中外遮光罩是凸出于飞船体之外的一个光学窗口,其表面的温度状态直接影响到飞船的光学遥感器。船体表面各部分的表面温度与遮光罩的表面温度不同。试分析,飞船在太空中飞行时与遮光罩表面发生热交换的对象可能有哪些?换热的方式是什么?
解:一遮光罩与外界发生辐射换热及遮光罩外表与船体外表进行辐射。传热方式为(辐射) 1-7 热电偶常用来测量气流温度。如附图所示,用热电偶来测量管道中高温气流的温度Tf
f。试分析热电偶结点的换热方式。 ,壁管温度w解:具有管道内流体对节点的对流换热,沿偶丝到节点的导热和管道内壁到节点的热辐射。
1-8 热水瓶胆剖面的示意图如附图所示。瓶胆的两层玻璃之间抽成真空,内胆外壁及外胆内壁涂了反射率很低的银。试分析热水瓶具有保温作用的原因。如果不小心破坏了瓶胆上抽气口处的密闭性,这会影响保温效果吗?
解:保温作用的原因:内胆外壁外胆内壁涂了反射率很低的银,则通过内外胆向外辐射的热量很少,抽真空是为了减少内外胆之间的气体介质,以减少其对流换热的作用。如果密闭性破坏,空气进入两层夹缝中形成
T?T
了内外胆之间的对流传热,从而保温瓶的保温效果降低。 导热
1-9 一砖墙的表面积为12m,厚为260mm,平均导热系数为1.5W/(m.K)。设面向室内的表面温度为25℃,而外表面温度为-5℃,试确定次砖墙向外界散失的热量。 解:根据傅立叶定律有:
225?(?)5?2076.9W?0.26
21-10 一炉子的炉墙厚13cm,总面积为20m,平均导热系数为1.04w/m.k,内外壁温分别是520℃及50℃。
???A?1.5?12?试计算通过炉墙的热损失。如果所燃用的煤的发热量是2.09×104kJ/kg,问每天因热损失要用掉多少千克煤? 解:根据傅利叶公式
每天用煤
?tQ??A?t1.04?20?(520?50)??75.2KW?0.13
24?3600?75.2?310.9Kg/d42.09?10
?t1-11 夏天,阳光照耀在一厚度为40mm的用层压板制成的木门外表面上,用热流计测得木门内表面热流密度
为15W/m2。外变面温度为40℃,内表面温度为30℃。试估算此木门在厚度方向上的导热系数。
?,解:
1-12 在一次测定空气横向流过单根圆管的对流换热实验中,得到下列数据:管壁平均温度tw=69℃,空气温度tf=20℃,管子外径 d=14mm,加热段长 80mm,输入加热段的功率8.5w,如果全部热量通过对流换热传给空气,试问此时的对流换热表面传热系数多大? 解:根据牛顿冷却公式
q?2?rlh?tw?tf?
qh??dtw?tf=49.33W/(m2.k)
所以
q????q?15?0.04??0.06W/(m.K)?t40?30
??1-13 对置于水中的不锈钢束采用电加热的方法进行压力为1.013?10Pa的饱和水沸腾换热实验。测得加热
功率为50W,不锈钢管束外径为4mm,加热段长10mm,表面平均温度为109℃。试计算此时沸腾换热的表面传热系数。
解:根据牛顿冷却公式有 ??Ah?t
5A?t W/(m.K)
1-14 一长宽各为10mm的等温集成电路芯片安装在一块地板上,温度为20℃的空气在风扇作用下冷却芯片。
芯片最高允许温度为85℃,芯片与冷却气流间的表面传热系数为175 W/(m.K)。试确定在不考虑辐射时芯片最大允许功率时多少?芯片顶面高出底板的高度为1mm。
2??hA?t?175W/m.K??0.01?0.01?4??0.01?0.001???(85℃-20℃) 解:max?h???4423.222?? =1.5925W
1-15 用均匀的绕在圆管外表面上的电阻带作加热元件,以进行管内流体对流换热的实验,如附图所示。用功率表测得外表面加热的热流密度为3500W/m;用热电偶测得某一截面上的空气温度为45℃,内管壁温度为80℃。设热量沿径向传递,外表面绝热良好,试计算所讨论截面上的局部表面传热系数。圆管的外径为36mm,壁厚为2mm。
2解:由题意 3500W/m?2?Rl?h?2?rl?(80℃-45℃)
2 又 r=R??=(18-2)mm=16mm
?h?112.5 W/(m.K)
1-16为了说明冬天空气的温度以及风速对人体冷暖感觉的影响,欧美国家的天气预报中普遍采用风冷温度的概念(wind-chill temperature)。风冷温度是一个当量的环境温度,当人处于静止空气的风冷温度下时其散热量
2
与人处于实际气温、实际风速下的散热量相同。从散热计算的角度可以将人体简化为直径为25cm、高175cm、表面温度为30℃的圆柱体,试计算当表面传热系数为15W/mK时人体在温度为20℃的静止空气中的散热量。如果在一个有风的日子,表面传热系数增加到50W/mK,人体的散热量又是多少?此时风冷温度是多少? 辐射
1-17 有两块无限靠近的黑体平行平板,温度分别为T1,T2。试按黑体的性质及斯藩-玻尔兹曼定律导出单位面积上辐射换热量的计算式。(提示:无限靠近意味着每一块板发出的辐射能全部落到另一块板上。)
4q??Tq??T2f21f1解:由题意 ; ;
4?2??2?两板的换热量为 q??(T1?T2)
1-18 宇宙空间可近似地看成为0K的真空空间。一航天器在太空中飞行,其外表面平均温度为250℃,表面发射率为0.7,试计算航天器单位表面上的换热量。
4?8244q???T?5.67?10W/(m.K)?250?155W/m2 解:=0.7
441-19 在1-14题目中,如果把芯片及底板置于一个封闭的机壳内,机壳的平均温度为20℃,芯片的表面黑度为0.9,其余条件不变,试确定芯片的最大允许功率。
?844???A?T?T=0.9?5.67?10[(85?273)?(20?273)]?0.00014 12辐射解:
?+?辐射=1.657W
P对流?44?1-20 半径为0.5 m的球状航天器在太空中飞行,其表面发射率为0.8。航天器内电子元件的散热总共为175W。假设航天器没有从宇宙空间接受任何辐射能量,试估算其表面的平均温度。 解:电子原件的发热量=航天器的辐射散热量即:Q???T
4??A
=187K 热阻分析
21-21 有一台气体冷却器,气侧表面传热系数h1=95W/(m.K),壁面厚?=2.5mm,??46.5W/(m.K)水侧
?T?4Q表面传热系数h2?5800W/(m.K)。设传热壁可以看成平壁,试计算各个环节单位面积的热阻及从气到水的总传热系数。你能否指出,为了强化这一传热过程,应首先从哪一环节着手?
2111?0.010526;R???0.0025?5.376?10?5;R3???1.724?10?4;2h1h25800?46.5解:
1K?11???2W/(m.K),应强化气体侧表面传热。 hh?12则=94.7
1-22 在上题中,如果气侧结了一层厚为2mm的灰,??0.116W/(m.K);水侧结了一层厚为1mm的水垢??1.15W/(m.K)。其他条件不变。试问此时的总传热系数为多少?
R1?解:由题意得
K?11?1?2?31????h1?1?2?3h2?110.0020.00250.0011????950.11646.51.155800
2W/(m.K) =34.6
1-23 在锅炉炉膛的水冷壁管子中有沸腾水流过,以吸收管外的火焰及烟气辐射给管壁的热量。试针对下列三
种情况,画出从烟气到水的传热过程的温度分布曲线: (1) 管子内外均干净;
(2) 管内结水垢,但沸腾水温与烟气温度保持不变;
(3) 管内结水垢,管外结灰垢,沸腾水温及锅炉的产气率不变。 解:
t?300℃,?1?5mm,?2?0.5mm,
1-24 在附图所示的稳态热传递过程中,已知: tw1?460℃,f2?1?46.5W/(m.K),?2?1.16W/(m.K),h2?5800W/(m2.K)。试计算单位面积所传递的热量。
解:由题意得
=225.35KW
1-25 在工程传热问题的分析中定性地估算换热壁面的温度工况是很有用的。对于一个稳态的传热过程,试概括出通过热阻以估计壁面温度工况的简明法则。
解:因为稳态传热所以通过每个截面的热流量都相等,热阻越小的串联环节温降小,则换热壁面温度越趋于接近,否则温差较大。
传热过程及综合分析
1-26 有一台传热面积为12m的氨蒸发器,氨液的蒸发温度为0℃,被冷却水的进口温度为9.7℃,出口温度为5℃,蒸发器中的传热量为69000W,试计算总传热系数。 解:由题意得
21?1?2???0.00071h1?1?2
?ttw?tf?q??RZRZ RZ??t1??t22=7.35℃
又???KA?t ?t?A?t
2 =782.3W/(m.K)
1-27 设冬天室内的温度为f1,室外温度为f2,试在该两温度保持不变的条件下,画出下列三种情形从室内空气到室外大气温度分布的示意性曲线: (1)室外平静无风;
(2)室外冷空气以一定流速吹过砖墙表面;
(3)除了室外刮风以外,还要考虑砖墙与四周环境间的辐射换热。 解 tf1 tf2
?K??tt