直线y= kx经过二, 四象限,从左向右下降,即随着 x的增大y反而减小。 九、求函数解析式的方法:
待定系数法:先设出函数解析式,再根据条件确定解析式中未知的系数,
从而具体写出这个式子的方法。
1. 一次函数与一元一次方程: 从“数”的角度看x为何值时函数y= ax+b的值为0. 2. 求ax+b=0(a, b是常数,a≠0)的解, 从“形”的角度看,求直线y= ax+b与 x 轴交点的横坐标 3. 一次函数与一元一次不等式:
解不等式ax+b>0(a,b是常数,a≠0) .
从“数”的角度看,x为何值时函数y= ax+b的值大于0.
4. 解不等式ax+b>0(a,b是常数,a≠0) . 从“形”的角度看,求直线y= ax+b在 x 轴上方的部分(射线)所对应的的横坐标的取值范围. 十、一次函数与正比例函数的图象与性质
一次函数 [ y=kx+b(k、b是常数,k≠0 ] 概念 图像 性质 如果y=kx+b(k、b是常数,k≠0),那么y叫x的一次函数 .当b=0时,一次函数y=kx(k≠0)也叫正比例函数. 一条直线 k>0时,y随x的增大(或减小)而增大(或减小); k<0时,y随x的增大(或减小)而减小(或增大). 直线y=kx+b(1)k>0,b>0图像经过一、二、三象限; (k≠0)的位(2)k>0,b<0图像经过一、三、四象限; 置与k、b符号(3)k>0,b=0 图像经过一、三象限;
11
之间的关系. (4)k<0,b>0图像经过一、二、四象限; (5)k<0,b<0图像经过二、三、四象限; (6)k<0,b=0图像经过二、四象限。 一次函数表达求一次函数y=kx+b(k、b是常数,k≠0)时,需要由两个点来式的确定 确定;求正比例函数y=kx(k≠0)时,只需一个点即可.
一次函数重点知识归纳:
1、自变量的取值范围考虑因素:
(1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零;
(3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零;
(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 2、一次函数的定义
一般地,形如y?kx?b(k,b是常数,且k?0)的函数,叫做一次函数,其中x是自变量。当b?0时,一次函数y?kx,又叫做正比例函数。
⑴ 次函数的解析式的形式是y?kx?b,
要判断一个函数是否是一次函数,就是判断是否能化成以上形式.
⑵当b?0,k?0时,y?kx仍是一次函数. ⑶当b?0,k?0时,它不是一次函数.
⑷正比例函数是一次函数的特例,一次函数包括正比例函数. 2、正比例函数及性质
一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数. 注:正比例函数一般形式 y=kx (k不为零) ① k不为零 ② x指数为1 ③ b取零 (1)解析式:y=kx(k是常数,k≠0) (2)必过点:(0,0)、(1,k)
(3)走向:k>0时,图像经过一、三象限;k<0时,?图像经过二、四象限 (4)增减性:k>0,y随x的增大而增大;k<0,y随x增大而减小
12
(5) 倾斜度:|k|越大,越接近y轴; 3、一次函数及性质
一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数. 当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数.
注:一次函数一般形式 y=kx+b (k不为零) ① k不为零 ②x指数为1 ③ b取任意实数
b一次函数y=kx+b的图象是经过(0,b)和(-,0)两点的一条直线,我们称它为直线y=kx+b,
k(1)解析式:y=kx+b(k、b是常数,k?0) (2)必过点:(0,b)和(-bk,0)
(3)走向: k>0,图象经过第一、三象限;k<0,图象经过第二、四象限 b>0,图象经过第一、二象限;b<0,图象经过第三、四象限
??k?0?k??b?0?直线经过第一、二、三象限 ?0?直线经过第一、三、四象限 ?b?0??k?0b?0?直线经过第一、二、四象限 ?k?0?0?直线经过第二、三、四象限 ???b(4)增减性: k>0,y随x的增大而增大;k<0,y随x增大而减小. (5)倾斜度:|k|越大,图象越接近于y轴;
4、一次函数y=kx+b的图象的画法.
根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线, 所以画一次函数的图象时,只要先描出两点,再连成直线即可.
一般情况下:是先选取它与两坐标轴的交点:(0,b),即横坐标或纵坐标为0的点.
b>0 b<0 b=0 k>0 经过第一、二、三象限 经过第一、三、四象限 经过第一、三象限
13
.
图象从左到右上升,y随x的增大而增大 经过第一、二、四象限 经过第二、三、四象限 经过第二、四象限 k<0 图象从左到右下降,y随x的增大而减小 5、正比例函数与一次函数之间的关系
一次函数y=kx+b的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到 (当b>0时,向上平移;当b<0时,向下平移) 6、正比例函数和一次函数及性质 概 念 正比例函数 一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数 X为全体实数 一条直线 (0,0)、(1,k) k>0时,直线经过一、三象限; k<0时,直线经过二、四象限 (0,b)和(-一次函数 一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.当b=0时,是y=kx,所以说正比例函数是一种特殊的一次函数. 自变量 范 围 图 象 必过点 走 向 b,0) kk>0,b>0,直线经过第一、二、三象限 k>0,b<0直线经过第一、三、四象限 k<0,b>0直线经过第一、二、四象限 k<0,b<0直线经过第二、三、四象限 增减性 倾斜度
k>0,y随x的增大而增大;(从左向右上升) k<0,y随x的增大而减小。(从左向右下降) |k|越大,越接近y轴;|k|越小,越接近x轴 14
图像的 平 移 b>0时,将直线y=kx的图象向上平移b个单位; b<0时,将直线y=kx的图象向下平移b个单位.
6、直线y?k1x?b1(k1?0)与y?k2x?b2(k2?0)的位置关系 (1)两直线平行?k1?k2且b1?b2 (2)两直线相交?k1?k2 (3)两直线重合?k1?k2且b1?b2 (4)两直线垂直?k1k2??1
7、用待定系数法确定函数解析式的一般步骤:
(1)根据已知条件写出含有待定系数的函数关系式;
(2)将x、y的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;
(3)解方程得出未知系数的值;
(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.
15
(word完整版)2019最新人教版八年级数学下册知识点总结归纳(全面),推荐文档
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)