17.周长相等的两个圆,面积不一定相等. × (判断对错)
【分析】根据圆的周长公式可知两个圆的周长相等,则两个圆的半径相等,再根据圆的面积公式可知两个圆的半径相等,两个圆的面积相等作出判断. 【解答】解:两个圆的周长相等,则两个圆的半径相等, 则面积也一定相等. 故答案为:×.
【点评】考查了圆的周长公式和圆的面积公式:圆的周长C=2πr,圆的面积S=πr2.
18.一件商品先提价25%,后再打八折出售,这件商品的价格不变. √ .(判断对错)
【分析】将这件商品的原价当做单位“1”,则提价25%后的价格是原价的1+25%,后再打八折出售,即按打折前的80%出售,则此时的价格是原价的(1+25%)×80%.
【解答】解:(1+25%)×80% =125%×80% =100%
即打折后的价格是原价的100%. 故答案为:√.
【点评】完成本题要注意第一次提价的分率与第二次打折的分率的单位“1”是不同的.
19.若a的等于b的(a、b均≠0),那么a>b.… 正确 .(判断对错) 【分析】根据“a的等于b的”,可知:a×=b×,逆用比例的性质先求出a、b两个数的比,即可比较出两数的大小. 【解答】解:因为a的等于b的, 可知:a×=b×,a:b=:=25:24; 所以a>b. 故答案为:正确.
.
【点评】本题主要考查学生灵活运用比例的性质求出两个数的比,进而进行两数的大小比较.
四、计算. 20. 口算. 8×=
=
11.625=
÷0.36×
=
÷
=
﹣
80×(1﹣60%)=
1+36%= 9.9×99+9.9=
【分析】根据分数小数的四则运算的计算法则计算即可,其中9.9×99+9.9根据乘法的分配律简算. 【解答】 解: 8×=10
÷=
﹣
=80×(1﹣60%)=32
11.625=1
÷0.36
=0.28
×
1+36%=1.36 9.9×99+9.9=990
【点评】本题关键是明确分数小数的四则运算的计算法则,要注意能简算的要简算.
21.递等式计算,能简算的要简算. (+﹣)×72 (4﹣
﹣)﹣(﹣÷
﹣
)
【分析】(1)根据乘法分配律计算; (2)根据减法的性质计算;
.
(3)先算除法,再按照减法的性质计算. 【解答】解:(1)(+﹣)×72 =×72+×72﹣×72 =56+60﹣18 =116﹣18 =98 (2)(==(=1﹣1 =0
﹣)﹣(﹣
)
﹣﹣++
)﹣(+)
(3)4﹣÷﹣
=4﹣(+) =4﹣2 =2
【点评】本题考查了分数四则混合运算,注意运算顺序和运算法则,灵活运用所学的运算定律进行简便计算.
22.解答题.
①一个数与的和相当于的45%,这个数是多少?
②已知小正方形ABCD的面积是20平方厘米,阴影部分的面积是多少?
.
【分析】(1)由题意可知:一个数+=×45%,所以一个数=×45%﹣,据此列式计算即可求解;
(2)假设小正方形的半径为r,则小正方形的面积=r×r÷2×4=2r2,又因小正方形的面积是20平方厘米,于是即可求出r2的值,进而依据“大正方形的面积﹣大圆的面积=阴影部分的面积”即可求解. 【解答】解:(1)×45%﹣ =﹣ =
答:这个数是
.
(2)设圆的半径为r,则大正方形的边长是2r, 又因小正方形的面积=r×r÷2×4=2r2 所以2r2=20,r2=10, 大正方形的面积为2r×2r =4r2 =4×10
=40(平方厘米); 圆的面积为πr2 =3.14×10
=31.4(平方厘米); 所以阴影部分的面积是: 40﹣31.4=8.6(平方厘米).
.
答:阴影部分的面积是8.6平方厘米.
【点评】(1)解答此题的关键是:弄清楚数量间的关系,得出等量关系式,问题即可得解.
(2)解答此题的关键是:弄清楚阴影部分的面积可以由哪些图形的面积和或差进行求解.
五、解决问题.
23.一种电脑现在售价是5500元,比原价降低了,这种电脑原价是多少元? 【分析】把原价看作单位“1”,那么现价占原价的(1﹣),根据已知一个数的几分之几是多少,求这个数,用除法解答. 【解答】解:5500÷(1﹣) =5500÷ =6600(元)
答:这种电脑原价是6600元.
【点评】此题属于已知比一个数少几分之几的数是多少,求这个数,只要找清单位“1”,利用基本数量关系解决问题.
24.米米三天看完一本书,第一天看了全部的,第二天看了余下的,第二天比第一天多看了5页,这本书共有多少页?
【分析】把这本书的总页数看作单位“1”,第一天看了还余下(1﹣),再把余下的页数看作单位“1”,根据分数乘法的意识,第二天看了总页数的(1﹣)×.再根据分数除法的意义,用5页除以两天看的页数所占的分率之差就是这本书的总页数.
【解答】解:5÷[(1﹣)×﹣] =5÷[×﹣] =5÷[﹣]
.