20.(2013年高考浙江卷(文))在公差为d的等差数列{an}中,已知a1=10,且a1,2a2+2,5a3成等比数列.
(Ⅰ)求d,an; (Ⅱ) 若d<0,求|a1|+|a2|+|a3|++|an| .
【答案】解:(Ⅰ)由已知得到:
(2a2?2)2?5a1a3?4(a1?d?1)2?50(a1?2d)?(11?d)2?25(5?d)
?d?4?d??1; ?121?22d?d?125?25d?d?3d?4?0??或??an?4n?6?an?11?n22(Ⅱ)由(1)知,当d?0时,an?11?n,
①当1?n?11时,
an?0?|a1|?|a2|?|a3|?????|an|?a1?a2?a3?????an? ②当12?n(10?11?n)n(21?n)?22n时,
an?0?|a1|?|a2|?|a3|?????|an|?a1?a2?a3?????a11?(a12?a13?????an)11(21?11)n(21?n)n2?21n?220?2(a1?a2?a3?????a11)?(a1?a2?a3?????an)?2???222
?n(21?n),(1?n?11)?2?所以,综上所述:|a1|?|a2|?|a3|??; ???|an|??2?n?21n?220,(n?12)??221.(2013年高考四川卷(文))在等比数列{an}中,a2?a1?2,且2a2为3a1和a3的等差中项,求数列{an}的
首项、公比及前n项和.
【答案】解:设
?an?的公比为q.由已知可得
a1q?a1?2,4a1q?3a1?a1q2,
所以a1(q?1)?2,q2?4q?3?0,解得 q?3 或 q?1,
由于a1(q?1)?2.因此q?1不合题意,应舍去,故公比q?3,首项a1?1.
3n?1所以,数列的前n项和Sn?
222.(2013年高考广东卷(文))设各项均为正数的数列
?an?的前n项和为Sn,满足4Sn?an2?1?4n?1,n?N?,且a2,a5,a14构成等比数列. (1) 证明:a2?4a1?5; (2) 求数列?an?的通项公式; (3) 证明:对一切正整数n,有
1111?????. a1a2a2a3anan?12【答案】(1)当n?1时,4a1222?a2?5,a2?4a1?5,?an?0?a2?4a1?5 (2)当n?2时,4Sn?1?an?4?n?1??1,4an?4Sn?4Sn?1?an?1?an?4
2222an?1?an?4an?4??an?2?,?an?0?an?1?an?2
2?当n?2时,?an?是公差d?2的等差数列.
2?a2,a5,a14构成等比数列,?a5?a2?a14,?a2?8??a2??a2?24?,解得a2?3,
22由(1)可知,4a1?a2?5=4,?a1?1
?a2?a1?3?1?2? ?an?是首项a1?1,公差d?2的等差数列.
?数列?an?的通项公式为an?2n?1.
(3)
1111111 ??????????a1a2a2a3anan?11?33?55?72n?12n?1????1??1??11??11??11??????1??????????????2??3??35??57??2n?12n?1??? 1?1?1???1??.2?2n?1??223.(2013年高考安徽(文))设数列
?an?满足a1?2,a2?a4?8,且对任意n?N*,函数
?f(x)?(an?an?1?an?2)x?an?1?cosx-an?2?sinx 满足f'()?0
2(Ⅰ)求数列?an?的通项公式; (Ⅱ)若bn?(2an?【答案】解:由a11,求数列?bn?的前n项和Sn. )an2?2 a2?a4?8
?x)f(x)?(an?an?1?an?2)x?an?1?cosx-an?2?sinx f(?an-an?1?an?2-an?1?sinx-an?2?cosx
f'()?an-an?1?an?2-an?1?0 所以,2an?1?an?an?2 ??an?是等差数列.
2而a1?2 a3?4 d?1 ?an?2?(n-1)?1?n?1 (2)bn?(2an??111 )?(2n?1?)?(2n?1)?2an2n?12n11(1-n)(22?n?1)n22 Sn??
12111-=(nn?3)?1-n?n2?3n?1-n22224.(2013年高考课标Ⅱ卷(文))已知等差数列
?an?的公差不为零,a=25,且a,a
1
1
11
,a13成等比数列.
(Ⅰ)求?an?的通项公式; (Ⅱ)求a1?a4?a7???a3n?2.
【答案】
25.(2013年高考江西卷(文))正项数列{an}满足an2?(2n?1)an?2n?0.
(1)求数列{an}的通项公式an; (2)令bn?1,求数列{bn}的前n项和Tn.
(n?1)an2【答案】解:(1)由an?(2n?1)an?2n?0得(an-2n)(an+1)=0
由于{an}是正项数列,则an?2n. (2)由(1)知an?2n,故bn?11111??(?)
(n?1)an(n?1)(2n)2n(n?1)?Tn?11111111n(1????...??)?(1?)? 2223nn?12n?12n?226.(2013年高考陕西卷(文))
设Sn表示数列{an}的前n项和.
(Ⅰ) 若{an}为等差数列, 推导Sn的计算公式;
1?qn(Ⅱ) 若a1?1,q?0, 且对所有正整数n, 有Sn?. 判断{an}是否为等比数列.
1?q【答案】解:(Ⅰ) 设公差为d,则an?a1?(n?1)d
?Sn?a1?a2???an?1?an?2Sn?(a1?an)?(a2?an?1)???(an?1?a1)?(an?a1)?S?a?a???a?ann?121?n?2Sn?n(a1?an)?Sn?n(a1?an)n?1?n(a1?d). 22,q?0,由题知q?1. (Ⅱ) a1?11?qn1?qn?11?qnqn?qn?1?n?N,Sn??an?1?Sn?1?Sn????qn
1?q1?q1?q1?q*?1an??n?1?qn?1n?2?an?qn?1,n?N*.
所以,数列{an}是首项a1?1,公比q?1的等比数列.
27.(2013年上海高考数学试题(文科))本题共有3个小题.第1小题满分3分,第2小题满分5分,第3小题
满分8分.已知函数f(x)?2?|x|.无穷数列{an}满足an?1?f(an),n?N*. (1)若a1?0,求a2,a3,a4;
(2)若a1?0,且a1,a2,a3成等比数列,求a1的值;
(3)是否存在a1,使得a1,a2,a3,,an成等差数列?若存在,求出所有这样的a1;若不存在,说明理由.
【答案】
28.(2013年高考课标Ⅰ卷(文))已知等差数列{an}的前n项和Sn满足S3?0,S5??5.
(Ⅰ)求{an}的通项公式; (Ⅱ)求数列{1}的前n项和.
a2n?1a2n?1【答案】(1)设{an}的公差为d,则Sn=na1?n(n?1)d. 2?3a1?3d?0,解得a1?1,d??1.?由已知可得?5a1?10d??5,
故?an?的通项公式为an=2-n.
(2)由(I)知
11111??(?),
a2n?1a2n?1(3?2n)(1?2n)22n?32n?1从而数列?
??1111111n1(-+-+?+?)?. 的前n项和为?2-11132n?32n?11?2n?a2n?1a2n?1?