4.4 一次函数的应用
第3课时 两个一次函数图象的应用
1.(2015?孝感一模)已知甲乙两人沿同一条公路从A地到B地,图中线段OC,DE分别表示甲乙从离开A地到达B地的过程中路程s(单位:km)与时间t(单位h)的函数关系,则从A地到B地的路程为( )
A.60km
2.(2015?香坊区一模)随着哈尔滨汽车的增加,哈市某乙储油库的储油量一直以每天相同的速度持续减少.为保证用户用油量,大庆某甲储油库立即以管道运输方式向哈市的乙储油库输油2天.如图,是两储油库的储油量y(升)与时间x(天)之间的函数图象.在单位时间内,甲储油库的放油量与乙储油库的进油量相同(油在排放、接收以及输送过程中的损耗不计).下列四种说法:
B.80km
C.90km
D.120km
(1)甲储油库向乙储油库输油期间每天的输油量是2000升; (2)在第4天时甲储油库输出的油开始注入乙储油库; (3)乙储油库每天减少550升;
(4)乙储油库最低油量是600升,最高油量是4200升. 其中正确的个数是( ) A.1个
B.2个 C.3个 D.4个
3.(2014?鞍山)一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,两车距甲地的距离y千米与行驶时间x小时之间的函数图象如图所示,则下列说法中错误的是( )
A.客车比出租车晚4小时到达目的地
B.客车速度为60千米/时,出租车速度为100千米/时 C.两车出发后3.75小时相遇
D.两车相遇时客车距乙地还有225千米
?
初中数学公式大全
1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12 两直线平行,同位角相等
13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边
17 三角形内角和定理三角形三个内角的和等于 180 ° 18 推论 1 19 推论 2 边形
21 平行四边形判定定理 边形
22 平行四边形判定定理 形
23 平行四边形判定定理 边形
24 矩形性质定理 25 矩形性质定理 26 矩形判定定理 27 矩形判定定理 28 菱形性质定理 29 菱形性质定理 平分一组对角
30 菱形面积 = 对角线乘积的一半,即 S= (a×b )÷2 31 菱形判定定理 1 四边都相等的四边形是菱形 32 菱形判定定理 2 对角线互相垂直的平行四边形是菱形 33 正方形性质定理 1 正方形的四个角都是直角,四条边都相等 34 正方形性质定理 2 正方形的两条对角线相等,并且互相垂直平
1 矩形的四个角都是直角 2 矩形的对角线相等
1 有三个角是直角的四边形是矩形 2 对角线相等的平行四边形是矩形 1 菱形的四条边都相等
2 菱形的对角线互相垂直,并且每一条对角线
4 一组对边平行相等的四边形是平行四3 对角线互相平分的四边形是平行四边2 两组对边分别相等的四边形是平行四
直角三角形的两个锐角互余
三角形的一个外角等于和它不相邻的两个内角的和
1 两组对角分别相等的四边形是平行四
20 平行四边形判定定理
分,每条对角线平分一组对角 35 定理 1 36 定理 2
关于中心对称的两个图形是全等的
关于中心对称的两个图形, 对称点连线都经过对称中
心, 并且被对称中心平分
37 逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
38 等腰梯形性质定理等腰梯形在同一底上的两个角相等