-------------------------------------------------------------------奋斗没有终点任何时候都是一个起点-----------------------------------------------------
而当x?0时,2(x?1)?1?3, x?1∴a??2,???. ..................................................5分 (2)设F(x)在(x0,F(x0))的切线平行于x轴,其中F(x)?2lnx?x?ax,不妨设:
2A(m,0),B(n,0),0?m?n
?2lnm?m2?am?0(1)?22lnn?n?an?0(2)??结合题意,有?m?n?2x0(3)
?2??2x0?a?0(4)x??0(1)-(2)得2lnm?(m?n)(m?n)?a(m?n) nmn?2x, 所以a?0m?n2ln由(4)得a?2?2x0, x0m?1)m2(m?n)n所以ln??(5)
mnm?n?1nm2(t?1)设t??(0,1),(5)式变为lnt??0(t?(0,1)).
nt?12(2(t?112(t?1)?2(t?1)(t?1)2?4t(t?1)2(t?(0,1)),h?(t)?????0, 设h(t)?lnt?222t?1t(t?1)t(t?1)t(t?1)所以函数h(t)?lnt?2(t?1)在(0,1)上单调递增,因此,h(t)?h(1)?0, t?1m?1)mn也就是ln?,此式与(5)矛盾.
mn?1n2(所以F(x)在点(x0,F(x0))处的切线不能平行于x轴. .......................(12分) 22.(1)∵AC为eO的切线,∴?B??EAC, 又DC是?ACE的平分线,∴?ACD??DCB.
由?B??DCB??EAC??ACD,得?ADF??AFD,
信达
-------------------------------------------------------------------奋斗没有终点任何时候都是一个起点-----------------------------------------------------
又?BAE?90,∴?ADF?01?BAE?450. 2(2)∵AB?AC,?B??ACB??EAC,?ACB??ACB, ∴?ACE:?BCA∴
ACAE0,又?ACE??ABC??CAE??BAE?180, ?BCAB0∴?B??ACB?30.在Rt?ABE中,∴
ACAE3??tan300?. BCAB323.解:(1)由曲线C的极坐标方程是:??∴由曲线C的直角坐标方程是:y?2x. 由直线l的参数方程?22cos?22?sin??2?cos?. ,得2sin??x?1?t,得t?3?y代入x?1?t中消去t得:x?y?4?0,
?y?t?3所以直线l的普通方程为:x?y?4?0. .....................................5分
2(2)将直线l的参数方程代入曲线C的普通方程y?2x,得t?8t?7?0,
2设A,B两点对应的参数分别为t1,t2, 所以AB?2t1?t2?2(t1?t2)2?4t1t2?282?4?7?62,
?41?1?22,
因为原点到直线x?y?4?0的距离d?所以?AOB的面积是
11...................10分 ABgd??62?22?12. .
2224.解:(1)∵2x?a?2a?6,∴2x?a?6?2a, ∴2a?6?2x?a?6?2a, ∴
3a.................................2分 a?3?x?3?,
22因为不等式f(x)?6的解集为x?6?x?4,
?3
a?3??6??2
所以?,解得a??2. .......................5分
a?3??4??2
(2)由(1)得f(x)?2x?2?4.
信达
-------------------------------------------------------------------奋斗没有终点任何时候都是一个起点-----------------------------------------------------
∴2x?2?4?(k2?1)x?5,
化简整理得:2x?2?1?(k2?1)x,.............................6分
?2x?3,x??1令g(x)?2x?2?1??,
?2x?1,x??1?y?g(x)的图象如图所示:
22要使不等式f(x)?(k?1)x?5的解集非空,需k?1?2,或k?1??1,.................8分
2∴k的取值范围是k|k?3或k??3或k?0...............................10分
??
信达