欧阳历创编 2021..02.09
数列裂项相消求和的典型
题型
时间:2021.02.09 创作人:欧阳历 1}anan?11.已知等差数列{an}的前n项和为Sn,a5?5,S5?15,则数列{的前100项和为() 1009999101A.B.C.D. 1011011001002.数列an?19,其前n项之和为,则在平面直角坐标系中,n(n?1)10直线(n?1)x?y?n?0在y轴上的截距为() A.-10B.-9C.10D.9
3.等比数列{an}的各项均为正数,且2a1?3a2?1,a32?9a2a6. (Ⅰ)求数列{an}的通项公式; (Ⅱ)设bn?log3a1?log3a2???log3an,求数列{1}的前n项和. bn4.正项数列{an}满足an2?(2n?1)an?2n?0. (Ⅰ)求数列{an}的通项公式an; (Ⅱ)令bn?1,求数列{bn}的前n项和Tn.
(n?1)an?2an?1.
5.设等差数列{an}的前n项和为Sn,且S4?4S2,a2n(Ⅰ)求数列{an}的通项公式;
欧阳历创编 2021..02.09
欧阳历创编 2021..02.09
(Ⅱ)设数列{bn}满足和Tn.
bb1b21????n?1?n,n?N*,求{bn}的前n项a1a2an26.已知等差数列{an}满足:a3?7,a5?a7?26.{an}的前n项和为
Sn.
(Ⅰ)求an及Sn; (Ⅱ)令bn?1*(n?N),求数列{bn}的前n项和Tn. 2an?17.在数列{an}中,a1?1,2an?1?(1?1)2an.
n(Ⅰ)求{an}的通项公式; (Ⅱ)令bn1?an?1?an,求数列{bn}的前n项和Sn;
2(Ⅲ)求数列{an}的前n项和Tn.
8.已知等差数列{an}的前3项和为6,前8项和为﹣4. (Ⅰ)求数列{an}的通项公式; (Ⅱ)设bn?(4?an)qn?1(q?0,n?N*),求数列{bn}的前n项和Sn.
9.已知数列{an}满足a1?0,a2?2,且对?m,n?N*都有
a2m?1?a2n?1?2am?n?1?2(m?n)2.
(Ⅰ)求a3,a5; (Ⅱ)设bn?a2n?1?a2n?1(n?N*),证明:{bn}是等差数列;
?(an?1?an)qn?1(q?0,n?N*),求数列{cn}的前n项和Sn.
(Ⅲ)设cn10.已知数列{an}是一个公差大于0的等差数列,且满足
a3a6?55,a2?a7?16.
(Ⅰ)求数列{an}的通项公式;
欧阳历创编 2021..02.09
欧阳历创编 2021..02.09
(Ⅱ)数列{an}和数列{bn}满足等式an?b1?b2222?b3bn???(n?N*),3n22求数列{bn}的前n项和Sn.
11.已知等差数列{an}的公差为2,前n项和为Sn,且S1,S2,S4成等比数列.
(1)求数列{an}的通项公式; (2)令b2?(?1)n?14n,求数列{bn}的前n项和Tn.
anan?12Sn?(n2?n?1)Sn?(n2?n)?0. 12.正项数列{an}的前n项和Sn满足:
(1)求数列{an}的通项公式an; (2)令bn都有Tn?答案: 1.A;2.B
3.解:(Ⅰ)设数列{an}的公比为q,由a32=9a2a6有a32=9a42,∴q2=.
由条件可知各项均为正数,故q=. 由2a1+3a2=1有2a1+3a1q=1,∴a1=. 故数列{an}的通项式为an=. (Ⅱ)bn=故=﹣
+
+…+
=﹣(1+2+…+n)=﹣)
)]=﹣
, ,
?n?1,数列{bn}的前2(n?2)2ann项和为Tn,证明:对于?n?N*,5. 64=﹣2(﹣
则++…+=﹣2[(1﹣)+(﹣)+…+(﹣
欧阳历创编 2021..02.09