好文档 - 专业文书写作范文服务资料分享网站

2007年全国硕士研究生入学统一考试数学三试题解析

天下 分享 时间: 加入收藏 我要投稿 点赞

2007全国硕士研究生入学统一考试数学三试题解析

一、选择题 (1)【答案】B 【详解】

方法1:排除法:由几个常见的等价无穷小,当x?0时,

x2x212xe?1:x;1?x?1:x;1?cosx?2sin:2()?,当x?0?时,此时2222xx?0,所以1?ex:(?x);1?x?1:11x;1?cosx:(x)2,可22以排除A、C、D,所以选(B).

方法2: ln1?x1?x?x?xx?x?ln?ln[1?] 1?x1?x1?xx?x当x?0?时,1?x?1,又因为x?0时,ln?1?x?:x, ?0,

1?x所以ln[1?x?xx?x]~~x?x?x1?x1?x?x?1~x,选(B).

?1?xln()1?x方法3:limx?0?x洛?1?x??1?x1?x?ln()()?1?x????lim1?x1?x lim?x?0?x?0?1x2x??1?x?1?x?lim?x?01?x?12x?1?x?2?1?x?12x?lim?x?02x2x?1?x?1?x??1??x??

2x2x?1?x?1?x??1??x???AB?1?x1?xA1?x?B?1?x??4x?2x?2xx

??对应系数相等得:A?2x,?B?1,所以

2x2x?1?x原式?lim?x?0?1?x??1??x???lim?2x1???? x?0?1?x1?x???lim?x?02x1?lim?0?1?1,选(B). 1?xx?0?1?x

(2)【答案】D 【详解】

方法1:论证法,证明A,B,C都正确,从而只有D不正确。

由limf(x)存在及f(x)在x?0处连续,所以

x?0xf(x)f(x)f(x)?0,所以(A)正?x?lim?limx?0?limf(0)?limf(x)?limx?0x?0x?0x?0x?0xxxf(x)?f(0)f(x)存在,根据导?limx?0x?0x确;

由选项(A)知,f(0)?0,所以limx?0数定义,

f'(0)?limx?0f(x)?f(0)存在,所以(C)也正确;

x?0由f(x)在x?0处连续,所以f(?x)在x?0处连续,从而

lim?f(x)?f(?x)??limf(x)?limf(?x)?f(0)?f(0)?2f(0)

x?0x?0x?0f(x)?f(?x)f(x)?f(?x)?f(x)?f(?x)?2f(0)?lim??x??lim?limx?0?lim?0,

x?0x?0x?0x?0xxx??即有f(0)?0,所以(B)正确,故此题选择(D).

方法2:举例法,举例说明(D)不正确。例如取f(x)?x,有

x??xf(x)?f(?x)lim?lim?0存在 x?0x?0x?0x而lim?x?0f?x??f?0?f?x??f?0??x?0x?0?lim??1lim?lim?1,,???x?0x?0x?0x?0x?0x?0x?0左右极限存在但不相等,所以f(x)?x在x?0的导数f'(0)不存在。(D)不正确,选(D).

(3)【答案】C

【详解】由题给条件知,f(x)为x的奇函数,则f(?x)??f(x),由F(x)??f(t)dt,

0x知

乐考无忧,为您的考研之路保驾护航!

F(?x)???x0f(t)dt令t??u??f(?u)d(?u)?因为f(?u)??f(u)??f(u)du?F(x),

00xx故F(x)为x的偶函数,所以F(?3)?F(3).

而F(2)??f(t)dt表示半径R?1的半圆的面积,所以

0F(2)??f(t)dt?022?R22?2?2,

33F(3)??f(t)dt??f(t)dt??f(t)dt,其中?f(t)dt表示半径r?002231的半圆的2面积的负值,所以?f(t)dt??223?r2232????1??2?2????? 2?2?8?所以 F(3)??f(t)dt??f(t)dt?0?8?3?3?3???F(2) 8424所以 F(?3)?F(3)?

(4)【答案】B

3F(2),选择C 4sinx?y?1 【详解】画出该二次积分所对应的积分区域D:?2?x??,交换积分次序,则积分区域可化为:D:0?y?1,??arcsiny?x?? 所以

(5)【答案】D 【详解】需求弹性?若

???2dx?1sinxf(x,y)dy??dy?01???arcsinyf(x,y)dx, 所以选择(B).

Q'(P)?2PP?P??1. Q(P)160?2P80?PPP?1,P?P?80,无意义;若?1,解得:P?40. 所以选(D) P?8080?P

(6)【答案】D

1?1?【详解】因为limy?lim??ln(1?ex)??lim?limln(1?ex)??,

x?0x?0x??x?0xx?0所以x?0是一条铅直渐近线;

1?1?因为limy?lim??ln(1?ex)??lim?limln(1?ex)?0?0?0,

x???x???x??x?-?xx?-?所以y?0是沿x???方向的一条水平渐近线;

www.lookwell.com.cn ;免费考研辅导视频

2007年全国硕士研究生入学统一考试数学三试题解析

2007全国硕士研究生入学统一考试数学三试题解析一、选择题(1)【答案】B【详解】方法1:排除法:由几个常见的等价无穷小,当x?0时,x2x212xe?1:x;1?x?1:x;1?cosx?2sin:2()?,当x?0?时,此时2222xx?0,所以1?ex:(?x);1?x?1:11x;1?cosx:(x)2,可22以排除
推荐度:
点击下载文档文档为doc格式
5bmbu20ysd7l7tx29ybm0wacw0f2i000g90
领取福利

微信扫码领取福利

微信扫码分享