第十八章 平行四边形
【教学目标】
1、通过对几种平行四边形的回顾与思考,使学生梳理所学的知识,系统地复习平行四边形与各种特殊平行四边形的定义、性质、判定方法;
2、正确理解平行四边形与各种特殊平行四边形的联系与区别,在反思和交流过程中,逐渐建立知识体系;
3、引导学生独立思考,通过归纳、概括、实践等系统数学活动,感受获得成功的体验,形成科学的学习习惯。 【教学重点】
1、平行四边形与各种特殊平行四边形的区别。
2、梳理平行四边形、矩形、菱形、正方形的知识体系及应用方法。 【教学难点】
平行四边形与各种特殊平行四边形的定义、性质、判定的综合运用。 【教学模式】
以题代纲,梳理知识-----变式训练,查漏补缺 -----综合训练,总结规律-----测试练习,提高效率
【教具准备】三角板、实物投影仪、电脑、自制课件。 【教学过程】
一、以题代纲,梳理知识 (一)开门见山,直奔主题
同学们,今天我们一起来复习《平行四边形》的相关知识,先请同学们迅速地完成下面几道练习题,请看大屏幕。 (二)诊断练习
1、根据条件判定它是什么图形,并在括号内填出,在四边形ABCD中,对角线AC和BD相交于点O:
(1) AB=CD,AD=BC (平行四边形) (2)∠A=∠B=∠C=90° ( 矩形 )
(3)AB=BC,四边形ABCD是平行四边形 ( 菱形 ) (4)OA=OC=OB=OD ,AC⊥BD ( 正方形 ) (5) AB=CD, ∠A=∠C ( ? )
2、菱形的两条对角线长分别是6厘米和8厘米,则菱形的边长为 5 厘米。 3、顺次连结矩形ABCD各边中点所成的四边形是 菱形 。
4、若正方形ABCD的对角线长10厘米,那么它的面积是 50 平方厘米。
5、平行四边形、矩形、菱形、正方形中,轴对称图形有: 矩形、菱形、正方形 ,中心对称图形的有: 平行四边形、矩形、菱形、正方形 ,既是轴对称图形,又是中心对称图形的是: 矩形、菱形、正方形 。 (二)归纳整理,形成体系 1、性质判定,列表归纳 边 性 角 质 对角线 平行四边形 对边平行且相等 对角相等 矩形 对边平行且相等 四个角都是直角 菱形 对边平行,四边相等 对角相等 正方形 对边平行,四边相等 四个角都是直角 互相垂直平分且相等,每条对角线平分一组对角 互相平分 互相垂直平分,且每条互相平分且相等 对角线平分一组对角 判定 1、两组对边分别平行; 2、两组对边分别相等; 3、一组对边平行且相等; 4、两组对角分别相等; 5、两条对角线互相平分. 1、有三个角是直角的四边形; 2、有一个角是直角的平行四边形; 3、对角线相等的平行四边形. 1、四边相等的四边形; 2、对角线互相垂直的平行四边形; 3、有一组邻边相等的平行四边形。 4、每条对角线平分一组对角的四边形。 1、有一个角是直角的菱形; 2、对角线相等的菱形; 3、有一组邻边相等的矩形; 4、对角线互相垂直的矩形; 对称性 面积 只是中心对称图形 S= ah S=ab 既是轴对称图形,又是中心对称图形 S=1d1d2 2S= a2 2、基础练习:
(1)矩形、菱形、正方形都具有的性质是( C )
A.对角线相等 (距、正) B. 对角线平分一组对角 (菱、正) C.对角线互相平分 D. 对角线互相垂直 (菱、正) (2)、正方形具有,矩形也具有的性质是( A )
A.对角线相等且互相平分 B. 对角线相等且互相垂直 C. 对角线互相垂直且互相平分 D. 对角线互相垂直平分且相等
(3)、如果一个四边形是中心对称图形,那么这个四边形一定( D ) A.正方形 B.菱形 C.矩形 D.平行四边形 都是中心对称图形,A、B、C都是平行四边形 (4)、矩形具有,而菱形不一定具有的性质是( B )
0
A. 对角线互相平分 B. 对角线相等 C. 对边平行且相等 D. 内角和为360问:菱形的对角线一定不相等吗?错,因为正方形也是菱形。 (5)、正方形具有而矩形不具有的特征是( D )
0
A. 内角为360 B. 四个角都是直角 C. 两组对边分别相等 D. 对角线平分对角 问:那么正方形具有而菱形不具有的特征是什么?对角线相等
2、集合表示,突出关系
平行四边矩正方菱二、查漏补缺,讲练结合 (一)一题多变,培养应变能力 〖例题1〗
已知:如图1,□ABCD的对角线AC、BD交于点O, EF过点O与AB、CD分别交于点E、F. 求证:OE=OF. 证明: ∵
变式1.在图1中,连结哪些线段可以构成新的平行四边形?为什么?
ADEOFOCFADA E O B
F C
D
图1
ECBB
1-1
对角线互相平分的四边形是平行四边形。
1-2 变式2.在图1中,如果过点O再作GH,分别交AD、BC于G、H,你又能得到哪些新的平行
四边形?为什么?
AGDAGDEFCBOHCFBAGDEOHCFAGD EE
OOF
HCHBB
变式2 2-1
对角线互相平分的四边形是平行四边形。
2-2 2-3 变式3.在图1中,若EF与AB、CD的延长线分别交于点E、F,这时仍有OE=OF吗?你还能构造出几个新的平行四边形?
FAOBECBEDAOCBEFDAOCFD变式3 3-1 3-2 对角线互相平分的四边形是平行四边形。
变式4.在图1中,若改为过A作AH⊥BC,垂足为H,连结HO并延长交AD于G,连结GC,
A G D
则四边形AHCG是什么四边形?为什么?
可由变式1可知四边形AHCG是平行四边形,
O 再由一个直角可得四边形AHCG是矩形。
C B H
变式4
变式5.在图1中,若GH⊥BD,GH分别交AD、BC于G、H,则四边形BGDH是什么四边形?为什么?
可由变式1可知四边形BGDH是平行四边形, 再由对角线互相垂直可得四边形BGDH是菱形。
A G O B H C D
变式6.在变式5中,若将“□ABCD”改为“矩形ABCD”,GH分别交AD、BC于G、H,则四边形BGDH是什么四边形?若AB=6,BC=8,你能求出GH的长吗?(这一问题相当于将矩形ABCD对折,使B、D重合,求折痕GH的长。) 略解:∵AB=6,BC=8 ∴BD=AC=10。
A
G
变式5 D O B
H C
设OG = x,则BG = GD=x2?25. 在Rt△ABG中,则勾股定理得: 2 2 2
AB+ AG= BG, 即6?8?x?25?x?25,
15 解得 x?.
4∴GH = 2 x = 7.5.
(二)一题多解,培养发散思维 〖例题2〗
已知:如图,在正方形ABCD,E是BC边上一点, F是CD的中点,且AE = DC + CE.
F
A D
2?2??22?2 求证:AF平分∠DAE. B E C 证法一:(延长法)延长EF,交AD的延长线于G(如图2-1)。 ∵四边形ABCD是正方形,
∴AD=CD,∠C=∠ADC=90°(正方形四边相等,四个角都是直角) ∴∠GDF=90°, ∴∠C =∠GDF
AD2 1 例2 G??C??GDF? 在△EFC和△GFD中 ??1??2 ?CF?DF?FCBE2-1 ∴△EFC≌△GFD(ASA) ∴CE=DG,EF=GF ∵AE = DC + CE, ∴AE = AD + DG = AG, ∴AF平分∠DAE.
证法二:(延长法)延长BC,交AF的延长线于G(如图2-2) ∵四边形ABCD是正方形,
∴AD // BC,DA=DC,∠FCG=∠D=90°
(正方形对边平行,四边相等,四个角都是直角) ∴∠3=∠G,∠FCG=90°, ∴∠FCG =∠D
A 3 4 D 2 F 1 ??FCG??D? 在△FCG和△FDA中 ??1??2 ?CF?DF? ∴△△FCG和△FDA(ASA)
B E C G
2-2