[命题解读] 从近五年全国卷高考试题来看,解答题第17题交替考查解三角形与数列,本专题的热点题型有:一是考查解三角形;二是解三角形与三角恒等变换的交汇问题;三是平面几何图形中的度量问题;四是三角形中的最值(范围)问题.
[典例示范] (本题满分12分)(2024·全国卷Ⅰ)在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.
(1)求cos∠ADB①; (2)若DC=22,求BC②.
[信息提取] 看到①想到△ADB;想到△ADB中已知哪些量;想到如何应用正、余弦定理解三角形.
看到②想到△DBC;想到用余弦定理求BC. [规范解答] (1)在△ABD中,由正弦定理得
5sin 45°
2
AB
=. sin∠Asin∠ADBBD
由题设知,=
,············································ 2分
sin∠ADB
2
所以sin∠ADB=5.······························································ 3分 由题设知,∠ADB<90°,所以cos∠ADB=223
1-25=5.·········
6分
2
(2)由题设及(1)知,cos∠BDC=sin∠ADB=5. ··························· 8分 在△BCD中,由余弦定理得
1
BC2=BD2+DC2-2BD·DC·cos∠BDC 2=25+8-2×5×22×5
=25. ················································································· 11分 所以BC=5. ······································································· 12分 [易错防范]
易错点 想不到先求sin∠ADB,再计算cos∠ADB 求不出cos∠BDC 防范措施 同角三角函数的基本关系:sin2α+cos2α=1常作为隐含条件,必须熟记于心 互余的两个角α,β满足sin α=cos β [通性通法] 求解此类问题的突破口:一是观察所给的四边形的特征,正确分析已知图形中的边角关系,判断是用正弦定理,还是用余弦定理,求边或角;二是注意大边对大角在解三角形中的应用.
[规范特训] (2024·皖南八校联考)在△ABC中,内角A,B,C所对的边分别是a,b,c.已知a+2b=2ccos A.
(1)求角C;
(2)已知△ABC的面积为3,b=4,求边c的长. [解] (1)∵a+2b=2ccos A,
∴由正弦定理得sin A+2sin B=2sin Ccos A,
则sin A+2sin(A+C)=2sin Ccos A,化简得sin A+2sin Acos C=0. 1由0<A<π,得sin A>0,则cos C=-2. 2π
由0<C<π,得C=3.
1
(2)△ABC的面积为2absin C=3.
2
3
又b=4,sin C=2,∴a=1.
1
∴由余弦定理得c2=a2+b2-2abcos C=1+16-2×1×4×(-2)=21,∴c=21.
3