七年级上册成都树德中学数学期末试卷测试卷附答案
一、初一数学上学期期末试卷解答题压轴题精选(难)
1.如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.
(1)写出数轴上点B表示的数________ , 点P表示的数________(用含t的代数式表示);
(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?
(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长; (4)若点D是数轴上一点,点D表示的数是x,请你探索式子|x+6|+|x﹣8|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.
【答案】 (1)点B表示的数是﹣6;点P表示的数是8﹣5t (2)解:设点P运动x秒时,在点C处追上点Q (如图) 则AC=5x,BC=3x, ∵AC﹣BC=AB ∴5x﹣3x=14… 解得:x=7,
∴点P运动7秒时,在点C处追上点Q
(3)解:没有变化.分两种情况: ①当点P在点A.B两点之间运动时: MN=MP+NP= AP+ BP= (AP+BP)= AB=7… ②当点P运动到点B的左侧时:
MN=MP﹣NP= AP﹣ BP= (AP﹣BP)= AB=7… 综上所述,线段MN的长度不发生变化,其值为7…
(4)解:式子|x+6|+|x﹣8|有最小值,最小值为14.…
【解析】【分析】(1)由于A点表示的数是8,故OA=8,又AB=14,从而得出OB=AB-OA=6,由于点B表示的数在原点的左边,故B点表示的数是-6,根据路程等于速度乘以时间得出AP=5t,从而得出P点表示的数是8-5t;
(2)设点P运动x秒时,在点C处追上点Q (如图)格努路程定于速度乘以时间得出AC=5x,BC=3x,然后由AC﹣BC=AB列出方程求解即可得出x的值;
(3)没有变化.根据线段中点的定义得出PM=AP,NP=BP,分两种情况:①当点P在点A.B两点之间运动时,由MN=MP+NP= AP+ BP= (AP+BP)= AB得出答案;②当点P运动到点B的左侧时:MN=MP-NP= AP- BP= (AP-BP)= AB得出答案,综上所述即可得出答案;
(4)式子|x+6|+|x﹣8|有最小值,最小值为14,点D是数轴上一点,点D表示的数是x,那么|x+6|表示点D,B两点间的距离,|x﹣8|表示点D,A两点间的距离,要|x+6|+|x﹣8|其实质就是DB+AD的和,要DB+AD的和最小,只有在D为线段AB上的时候,DB+AD的和最小=AB,即可得出答案。
2.将一副三角板中的两块直角三角尺的直角顶点 O 按如图方式叠放在一起.
(1)如图 1 , 若∠ BOD=35° , 则∠ AOC=________; 若∠AOC=135°, 则∠BOD=________;
(2)如图2,若∠AOC=140°,则∠BOD=________;
(3)猜想∠AOC 与∠BOD 的大小关系,并结合图1说明理由.
(4)三角尺 AOB 不动,将三角尺 COD 的 OD 边与 OA 边重合,然后绕点 O 按顺时针或逆时针方向任意转动一个角度,当∠A OD(0°<∠AOD<90°)等于多少度时,这两块三角尺各有一条边互相垂直,直接写出∠AOD 角度所有可能的值,不用说明理由.
【答案】 (1)145°;45° (2)40°
(3)解:∠AOC 与∠BOD 互补. ∵∠AOD+∠BOD+∠BOD+∠BOC=180°. ∵∠AOD+∠BOD+∠BOC=∠AOC, ∴∠AOC+∠BOD=180°, 即∠AOC 与∠BOD 互补
(4)解:OD⊥AB 时,∠AOD=30°, CD⊥OB 时,∠AOD=45°, CD⊥AB 时,∠AOD=75°, OC⊥AB 时,∠AOD=60°,
即∠AOD 角度所有可能的值为:30°、45°、60°、75°
【解析】【解答】解:(1)若∠BOD=35°,∵∠AOB=∠COD=90°, ∴∠AOC=∠AOB+∠COD﹣∠BOD=90°+90°﹣35°=145°, 若∠AOC=135°, 则∠BOD=∠AOB+∠COD﹣∠AOC=90°+90°﹣135°=45°; ( 2 )如图 2,若∠AOC=140°,
则∠BOD=360°﹣∠AOC﹣∠AOB﹣∠COD=40°; 故答案为:(1)145°,45°;(2)40°.
【分析】(1)根据∠AOC=∠AOB+∠COD﹣∠BOD,就可求出∠AOC的度数;再由∠BOD=∠AOB+∠COD﹣∠AOC,可求出∠BOD的度数。
(2)观察如图2可证∠BOD=360°﹣∠AOC﹣∠AOB﹣∠COD,代入计算可求解。 (
3
)
观察图
形
可
得
出
∠AOD+∠BOD+∠BOD+∠BOC=180°
,
而
∠AOC=∠AOD+∠BOD+∠BOC ,即可证得结论。
(4)分情况讨论:OD⊥AB 时;CD⊥OB 时;CD⊥AB 时;OC⊥AB 时, 根据垂直的定义,分别求出∠AOD的度数。
3.已知,
,OB、OM、ON是
内的射线.
(1)如图,若OM平分 ;
(2)如图,若OM平分 (3)如图,OC是
,ON平分 内的射线,若
,求
的度数; ,OM平分
,ON平分
,ON平分
,
,则
________