A.
(x?1)2cos1x?1
sin(x?1)2B.x?1
C.
x3?1x?1
(x?1)2D.x?x?2
??′e°???C
92?¢??65093??£¨μ¥??????ìa£?当x?1时下列变量中不是无穷小量的是( ). A.x22?1
B.3x?2x?1 C.x(x?2)?1
2D.4x?2x?1 ??′e°???D
93?¢??65100??£¨μ¥??????ìa£?当x??时,下列变量中是无穷小量的是( ). A.
xsinx21x
B.eC.
1sinxx xx?2
D.
??′e°???C
94?¢??65120??£¨μ¥??????ìa£?若在x?x0时,?(x)与?(x)都是无穷小量,且A.
?(x)?0,则在x?x0时,下列各式不一定是无穷小量的是( ).
?(x)??(x)
22B.[?(x)]?[?(x)] C.ln[1??(x)??(x)] D.
??′e°???D
95?¢??65128??£¨μ¥??????ìa£?若A.a??3,b?2 B.a?3,b??2 C.a?3,b?2 D.a??3,b??2 ??′e°???B
96?¢??65131??£¨μ¥??????ìa£?
ax2?bx?11lim(3x?1?x)?3x???(x)?2(x)
,则a,b值为( ).
lim1(1?2x)sinx?x??( ).
A.0 B.1 C.?
D.不存在
??′e°???A
97?¢??65136??£¨μ¥??????ìa£?设
( ).
f(x)在(??,??)连续,下列为偶函数的是
A.
f(x)
B.f(x) C.f(x)?2f(?x)
D.[f(x)]
??′e°???B
98?¢??65139??£¨μ¥??????ìa£?当x?1时,lnx与x?1比较是( ). A.高阶无穷小 B.低阶无穷小
C.同阶非等价无穷小 D.等价无穷小
??′e°???D
99?¢??99268??£¨μ¥??????ìa£?若
( ).
x??limf(x)?A,则当x??时,f(x)?A是
A.0
B.振荡变量 C.无穷大量 D.无穷小量
??′e°???D
100?¢??102062??£¨μ¥??????ìa£?x???
lim(x(4x?3)?2x)?( ).
3C.4 D.?
??′e°???C
m??(1?kx)x,x?0f(x)???a,x?0?101?¢??102063??£¨μ¥??????ìa£?若 在x?0处连续,则a?( ).
A.em
B.e
kmC.e
D.
??′e°???C
kemk102?¢??102074??£¨μ¥??????ìa£?当x?0时,下列无穷小中不是x的等价无穷小
的是( ).
A.x?sinx B.arcsinx C.ln(1?x)
2D.tanx?x
??′e°???A
103?¢??102075??£¨μ¥??????ìa£?当x?0时,A.无穷大量 B.无穷小量 C.无界变量 D.无法判定
??′e°???B
104?¢??102076??£¨μ¥??????ìa£?当x?x0时,若f(x)有极限,g(x)无极限,则当
时,f(x)?g(x)( ).
A.无极限 B.有极限
C.可能有,也可能没有极限 D.若有极限,极限必为零
x?x0xarctan1x是( ).
??′e°???C
105?¢??102077??£¨μ¥??????ìa£?当x?1时,下列变量不是无穷小量的是
( ).
A.x?1
B.x(x?2)?1
sin(x?1)C.x?1
22D.3x?2x?1 ??′e°???C
106?¢??102082??£¨μ¥??????ìa£?设A.2 B.1 C.4 D.0
??′e°???C
107?¢??193642??£¨μ¥??????ìa£?A.B.
34 43
x?1limsink(x?1)x2?1?2,则k?( ).
x??limn(n?2)?n4n?3n?4n?122?( ).
2C.3
8D.3
??′e°???B
108?¢??98431??£¨ì???ìa£? ??′e°???e
109?¢??98435??£¨ì???ìa£? ??′e°????ln2
110?¢??98440??£¨ì???ìa£?
1??′e°???e
12x)x1?2lim(1?3x)3xx?0?_____.
klim(1?x)x若x?0?lim2x?1x??x?1,则k?_____.
lim(x?1)x??xx?_____.
111?¢??98442??£¨ì???ìa£?若x?0 ??′e°????2
112?¢??98443??£¨ì???ìa£?x?? ??′e°???1
lim(1??ek,则k?_____.
lim(xsinx?11sinx)?x_____.
?x?1?lim??x???x?113?¢??98447??£¨ì???ìa£?
3x?2?_____.
??′e°???e
?3
x2?x2?1??lim?x???x2?1??114?¢??98448??£¨ì???ìa£???_____.
??′e°???e
2
115?¢??98451??£¨ì???ìa£? ??′e°???
12?
x??limsin(x??)x2??2?_____.
3x?x3?x?33?x116?¢??98453??£¨ì???ìa£?_____.
??′e°???27(1?ln3)
lim
117?¢??98455??£¨ì???ìa£? ??′e°???e
?2
1lim(1?2x)xx?0?_____.
?sin(??x)?,x?0f(x)??x?k,x?0在点x?0处间断,则k应满足的?118?¢??98457??£¨ì???ìa£?设
条件是_____.
??′e°???k?1
119?¢??98467??£¨ì???ìa£?x?? ??′e°???e
?2lim(x?2x?1)?x_____.
120?¢??98468??£¨ì???ìa£?
? ??′e°???2
limnsin2nn????_____.
?x2?x?2?f(x)??x?2,x?2?k?121?¢??98469??£¨ì???ìa£?若函数 ,x?2在x?2处连续,则k?_____.
??′e°???3
?x?lim??x???x?2?122?¢??98471??£¨ì???ìa£?
?x?3?_____.
??′e°???e
2
123?¢??98473??£¨ì???ìa£?
210x??lim(2x?1)10(x?3)20(3x?1)30?_____.
??′e°???3
30
124?¢??98474??£¨ì???ìa£?t?? ??′e°???x
125?¢??98476??£¨ì???ìa£?x?0 ??′e°???e
?2
limt?sinx?t_____.
limx(1?x)2?_____.