4. 偶然误差的特性
第三章 协方差传播律及权
在测量实际工作中,往往会遇到某些量的大小并不是直接测定的,而是由观测值通过一定的函数关系间接计算出来的,显然,这些量是观测值的函数。例如,在一个三角形中 同精度观测了3个内角L1,L2和L3,其闭合差w和各角度的平差值分别
又
如
图
3
—
1
中
用侧方交会求交会点的坐标等。
现在提出这样一个问题:观测值函数的精度如何评定?其中误差与观测值的中误差存在怎样的关系?如何从后者得到前者?这是本章所要讨论的重要内容,阐述这种关系的公式称为协方差传播律。
§ 3—1 数学期望的传播
数学期望是描述随机变量的数字特征之一,在以后的公式推导中经常要用到它,因此,首先介绍数
学
期
望
的
定
义
和
运
算
公
式
。
其
定
义
是
:
§ 3—2 协方差传播律
从测量工作的现状可以看出:观测值函数与观测值之间的关系可分为以下3种情况,下面就按这3
种
情
况
来
讨
论
两
者
之
间
中
误
差
的
关
系
。
测量平差知识大全
4.偶然误差的特性第三章协方差传播律及权在测量实际工作中,往往会遇到某些量的大小并不是直接测定的,而是由观测值通过一定的函数关系间接计算出来的,显然,这些量是观测值的函数。例如,在一个三角形中同精度观测了3个内角L1,L2和L3,其闭合差w和各角度的平差值分别又如图3
推荐度:
点击下载文档文档为doc格式