e?x11xx134.解:?e(1?2)dx??(e?2)dx?e??C
xxxx135.解:选A 136.解:因为137.解:对138.解:139.解:
?sin2xdx??2sinxcosxdx??2sinxdsinx?sin2x?c,故选B
?xf(x)dx?xsinx??sinxdx两边求导得xf(x)?sinx?xcosx?sinx ,故选C
f'(lnx)1dx?f(lnx)?c??c,故选B xx'?x?xxf'(x)dx?xdf(x)?xf(x)?f(x)dx??xe?e?c,故选B ????140.解:
??f(x)dx?=f(x),故选A
52141.解:选C 142.解:?xxdx?x2?c,c?1,故选B
5143.解:144.解:
11dx???c,选B ?x32x2f(x)?(xlnx)'?1?lnx,?xf(x)dx??(x?xlnx)dx
12x21212111?x??lnxd?x?xlnx?x2?c?x2(?lnx)?c,选B 2222442145.解:
11sinxcosxdx?sin2xdx??cos2x?c,选A ??24x146.解:选B 147.解:选A
148.解:因为lim?sintdt0xx?0
?lim?xdx0x2sin?tdt0xsinx?1,故选D
x?0x149.解:因为limx?0
2?xdx0sin2x?lim?1,故选D x?0x2?150.解:limx?0x0sint3dtx4lnx2sinx31?lim?,故选A x?04x342d151.解:因为
dx152.解:因为
t?1lnxedt?e?0?12?2ex,故选C xdf(x)?sintdt?sinx,故选A
dx?0?3x3x??0,所以?(0)为 213x?x?1(x?)2?2425
x153.解:?'(x)
函数??x???3t1]上的最小值 ,故选D dt在区间[0,20t?t?12x212212x154.解:
x???lim(3x?1)3f'(x)e(3x?1)??lim ?lim
x???cxc?1?2xc2g'(x)x???(cxc?1?2xc)e2xx所以c?1,故选B
d155.解:(dx?1111?x2?x,故选D 1?tdt)?? 2x2x4x156.解:选C 157.解:a?lim?sintdt0x?0x2?limsinx1?,故选B
x?02x2158.解:由于F'(x)?f(x),故选B
x2f(t)dtxx?2af(t)dt?limxlim?a2f(a),选B 159.解:因为limF(x)?lim?x?ax?aax?ax?ax?ax?a160.解:选C 161.解:选A 162.解:
???0e?xdx??e?x??0?1,选C
163.解:
??01?cos2xdx?????x0?02cos2xdx???02cosxdx?22,选C
164.解:F(?x)f(t)dt,令t??u,则
x0F(?x)??f(?u)(?du)???f(u)du??F(x),选B
0??x165.解:因为
?1??1??dx1?x2?2,故选B
31xx??123??166.解:因为
dx1?2??1?x?,故选A 3?1?22x1??167.解:
?pxe?dx??a1?px??1e? e?pa,故选C
aPp168.解:
????edx1?????1,故选A
lnxex(lnx)2e?kx169.解:
??0???kx1?kx??,所以积分dx??eedx收敛,必须k?0故选A ?00k170.解:
?edx?e??0xx0???1,选A 171.解:???e??lnx,发散,选B dx?lnlnxex172.解:因为
???e11??dx???1,选C 173.解:选B 2lnxex(lnx)26
174.解:若f(x)在区间[a,b]上连续,则f(x)在区间[a,b]上可积。反之不一定成立.因此是充分条件。所以答案为B. 175.解:由于
sinx1?x2
在对称区间[-1,1]上为奇函数,因此积分值为0.所以答案为A.
0x4332176.解:
??2x|x|dx=??2(?x)dx+?0xdx=?4101?2x4?411=4+
0117?.所以答案为C. 44e177.解:(5x?1)edx=?(5x?1)d?00545x45x5x1ee(5x?1)??d(5x?1) =
05505x6e5?1e5x?=
55221?e5.所以答案为B.
0111178.解:因为?xf(x)dx? ?f(x2)dx2??f(t)dt??f(x)dx,故选A
2202000179.解:因为被积函数为奇函数,故选A 180.解:I'(l)2244?0,I(l)?c,令l?0,得I??f(x)dx,选B
0T181.解:因为
?0f(x)dx? ?2f(x)dx?2?f(t)dt?2?f(x)dx,故选D x000111f(2x)= ?f(2)?f(0)?,故选C
0222221182.解:
?0f'(2x)dx?183.解:选A 184.解:185.解:
?ba1f'(2x)dx?[f(2b)?f(2a)],选C
2?dx?2,选C
?11186.解:
a(arccosx)'dx?arccosx?arccosa?arccos0,选D ?00a187.解:选D 188.解:因为
?212x327x42153xdx??,?xdx??,选A
1313414222xsinxx2sinxdx?0,选D 189.解:因为为奇函数,所以?22?21?x1?x190.解:
?11-1xdx?2?xdx?1,选C
0191.解:x?sinx为奇函数,所以
2?2-2(x?sinx)dx?0,选D
0192.解:
??1xdx???xdx??xdx??1025,选D 2193.解:选A
194.解:作出函数的图形知选A
21y2?4?x
123427
-1
195.解:
13.532.521.510.50.20.40.60.811.2y?ex过原点的切线为y?ex,作出函数的图形知选C
y?ex y?ex 196.解:如图: 曲线
197.解:由
y?x与y?x2所围成平面图形的面积?2(x?x)dx??01,选A 31.41.210.80.60.40.20.20.40.60.811.2y?x y?x2 y?c?x,y???1代入方程x?y?y??x?(c?x)?(?1)?c?1?1,
所以不是解.所以答案为D.
198.解:将
y?3e2x,y??6e2x,y???12e2x,带入微分方程有.y???4y?12e2x?12e2x?0,因此式方程的解.由于
y?3e2x中无任意常数,所以为特解.答案选B.
199.解:由微分方程阶的定义:常微分方程中导数出现的最高阶数知为二阶.
由方程中出现(y??)知,方程为非线性的.所以答案B正确.
200.解:由
2y?C1e?x?C2,y???C1e?x,y???C1e?x代入方程有
y???y???C1e?x?C1e?x?0.且y?C1e?x?C2中有两个独立的任意常数,因此答案为D.
28