好文档 - 专业文书写作范文服务资料分享网站

人教版高中数学知识点总结新

天下 分享 时间: 加入收藏 我要投稿 点赞

.

强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。 公理4作用:判断空间两条直线平行的依据。

3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补 4 注意点:

① a'与b'所成的角的大小只由a、b的相互位置来确定,与O的选择无关,为

?2简便,点O一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, );

③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a⊥b;

④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;

⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。 2.1.3 — 2.1.4 空间中直线与平面、平面与平面之间的位置关系 1、直线与平面有三种位置关系: (1)直线在平面 —— 有无数个公共点

(2)直线与平面相交 —— 有且只有一个公共点 (3)直线在平面平行 —— 没有公共点

指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示

a α a∩α=A a∥α

2.2.直线、平面平行的判定及其性质

Word 资料

.

2.2.1 直线与平面平行的判定

1、直线与平面平行的判定定理:平面外一条直线与此平面的一条直线平行,则该直线与此平面平行。

简记为:线线平行,则线面平行。 符号表示:

a α

b β => a∥α a∥b

2.2.2 平面与平面平行的判定

1、两个平面平行的判定定理:一个平面的两条交直线与另一个平面平行,则这两个平面平行。

符号表示:

a β b β

a∩b = P β∥α a∥α b∥α

2、判断两平面平行的方法有三种: (1)用定义; (2)判定定理;

(3)垂直于同一条直线的两个平面平行。

Word 资料

.

2.2.3 — 2.2.4直线与平面、平面与平面平行的性质

1、定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。

简记为:线面平行则线线平行。 符号表示:

a∥α

a β a∥b α∩β= b

作用:利用该定理可解决直线间的平行问题。

2、定理:如果两个平面同时与第三个平面相交,那么它们的交线平行。 符号表示:

α∥β

α∩γ= a a∥b β∩γ= b

作用:可以由平面与平面平行得出直线与直线平行 2.3直线、平面垂直的判定及其性质

2.3.1直线与平面垂直的判定 1、定义

如果直线L与平面α的任意一条直线都垂直,我们就说直线L与平面α互相垂直,记作L⊥α,直线L叫做平面α的垂线,平面α叫做直线L的垂面。如图,直线与平面垂直时,它们唯一公共点P叫做垂足。

L p Word 资料

.

α

2、判定定理:一条直线与一个平面的两条相交直线都垂直,则该直线与此平面垂直。

注意点: a)定理中的“两条相交直线”这一条件不可忽视;

b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想。

2.3.2平面与平面垂直的判定

1、二面角的概念:表示从空间一直线出发的两个半平面所组成的图形

A

梭 l β

B α

2、二面角的记法:二面角α-l-β或α-AB-β

3、两个平面互相垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。

2.3.3 — 2.3.4直线与平面、平面与平面垂直的性质 1、定理:垂直于同一个平面的两条直线平行。

2性质定理: 两个平面垂直,则一个平面垂直于交线的直线与另一个平面垂直。

本章知识结构框图

直线与平面的位置关系 Word 资料 平面(公理1、公理2、公理3、公理4) 空间直线、平面的位置关系 平面与平面的位置关系 .

第三章 直线与方程

3.1直线的倾斜角和斜率 3.1倾斜角和斜率

1、直线的倾斜角的概念:当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时, 规定α= 0°.

2、 倾斜角α的取值围: 0°≤α<°. 当直线l与x轴垂直时, α= 90°. 3、直线的斜率:

一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是 k = tanα

⑴当直线l与x轴平行或重合时, α=0°, k = tan0°=0; ⑵当直线l与x轴垂直时, α= 90°, k 不存在.

由此可知, 一条直线l的倾斜角α一定存在,但是斜率k不一定存在. 4、 直线的斜率公式:

给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率: 斜率公式: k=y2-y1/x2-x1 3.1.2两条直线的平行与垂直

1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即

注意: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2, 那么一定有L1∥L2

2、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,

Word 资料

人教版高中数学知识点总结新

.强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。公理4作用:判断空间两条直线平行的依据。3等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补4注意点:①a'与b'所成的角的大小只由a、b的相互位置来确定,与O的选
推荐度:
点击下载文档文档为doc格式
58p0f3gpm68mpoj7ocb09o8y29wtcx00z18
领取福利

微信扫码领取福利

微信扫码分享