.
际意义.
(4)求函数的值域或最值
求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:
①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.
②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值围确定函数的值域或最值.
③判别式法:若函数y?f(x)可以化成一个系数含有y的关于x的二次方程
a(y)x2?b(y)x?c(y)?0,则在a(y)?0时,由于x,y为实数,故必须有??b2(y)?4a(y)?c(y)?0,从而确定函数的值域或最值.
④不等式法:利用基本不等式确定函数的值域或最值.
⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.
⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.
⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.
【1.2.2】函数的表示法
(5)函数的表示方法
Word 资料
.
表示函数的方法,常用的有解析法、列表法、图象法三种.
解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列
出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念
①设A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B中都有唯一的元素和它对应,那么这样的对应(包括集合A,
B以及A到B的对应法则f)叫做集合A到B的映射,记作f:A?B.
②给定一个集合A到集合B的映射,且a?A,b?B.如果元素a和元素b对应,那么我们把元素b叫做元素a的象,元素a叫做元素b的原象.
〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值
(1)函数的单调性
①定义及判定方法 函数的 定义 性 质 图象 判定方法 Word 资料
.
如果对于属于定义域I某个区间上的任意两个自变量的值x1、x2,当x< 12.时,都有...x.f(x)
u?g(x)为增,则y?f[g(x)]为增;若y?f(u)为减,u?g(x)为减,则y?f[g(x)]为增;若y?f(u)为增,u?g(x)为减,则y?f[g(x)]为减;若
y?f(u)为减,u?g(x)为增,则y?f[g(x)]为减.
a(2)打“√”函数f(x)?x?(a?0)的图象与性质
xf(x)分别在(??,?a]、[a,??)上为增函数,分别在[?a,0)、(0,a]上为
减函数.
(3)最大(小)值定义
①一般地,设函数y?f(x)的定义域为I,如果存在实数M满足:(1)对于
任意的x?I,都有f(x)?M;
(2)存在x0?I,使得f(x0)?M.那么,我们称M是函数f(x) 的
最大值,记作fmax(x)?M.
②一般地,设函数y?f(x)的定义域为I,如果存在实数m满足:(1)对于任意的x?I,都有f(x)?m;(2)存在x0?I,使得f(x0)?m.那么,我们称m是函数f(x)的最小值,记作fmax(x)?m.
【1.3.2】奇偶性
(4)函数的奇偶性
①定义及判定方法 函数的 定义 性 质 图象 判定方法 Word 资料
.
如果对于函数f(x)定义域任意一个x,都有f(-x)=-f(x),那么函...........数f(x)叫做奇函数. ... (1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于原点函数的 奇偶性 如果对于函数f(x)定义域任意一个x,都有f(-x)=f(x),那么函数..........f(x)叫做偶函数. ... 对称) (1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于y轴对称) ②若函数f(x)为奇函数,且在x?0处有定义,则f(0)?0.
③奇函数在y轴两侧相对称的区间增减性相同,偶函数在y轴两侧相对称的区间增减性相反.
④在公共定义域,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.
〖补充知识〗函数的图象
(1)作图
Word 资料