好文档 - 专业文书写作范文服务资料分享网站

人教版高中数学知识点总结新

天下 分享 时间: 加入收藏 我要投稿 点赞

.

两种方法:

1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。

2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取样本。

2.分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。

分层标准:

(1)以调查所要分析和研究的主要变量或相关的变量作为分层的标准。 (2)以保证各层部同质性强、各层之间异质性强、突出总体在结构的变量作为分层变量。

(3)以那些有明显分层区分的变量作为分层变量。 3.分层的比例问题:

(1)按比例分层抽样:根据各种类型或层次中的单位数目占总体单位数目的比重来抽取子样本的方法。

(2)不按比例分层抽样:有的层次在总体中的比重太小,其样本量就会非常少,此时采用该方法,主要是便于对不同层次的子总体进行专门研究或进行相互比较。如果要用样本资料推断总体时,则需要先对各层的数据资料进行加权处理,调整样本中各层的比例,使数据恢复到总体中各层实际的比例结构。

2.2.2用样本的数字特征估计总体的数字特征 1、本均值:x? Word 资料

x1?x2???xn

n .

(x1?x)2?(x2?x)2???(xn?x)22、.样本标准差:s?s?

n23.用样本估计总体时,如果抽样的方法比较合理,那么样本可以反映总体的信息,但从样本得到的信息会有偏差。在随机抽样中,这种偏差是不可避免的。

虽然我们用样本数据得到的分布、均值和标准差并不是总体的真

正的分布、均值和标准差,而只是一个估计,但这种估计是合理的,特别是当样本量很大时,它们确实反映了总体的信息。

4.(1)如果把一组数据中的每一个数据都加上或减去同一个共同的常数,标准差不变

(2)如果把一组数据中的每一个数据乘以一个共同的常数k,标准差变为原来的k倍

(3)一组数据中的最大值和最小值对标准差的影响,区间(x?3s,x?3s)的应用;

“去掉一个最高分,去掉一个最低分”中的科学道理 2.3.2两个变量的线性相关 1、概念:

(1)回归直线方程 (2)回归系数 2.最小二乘法

3.直线回归方程的应用

(1)描述两变量之间的依存关系;利用直线回归方程即可定量描述两个

变量间依存的数量关系

(2)利用回归方程进行预测;把预报因子(即自变量x)代入回归方程

Word 资料

.

对预报量(即因变量Y)进行估计,即可得到个体Y值的容许区间。

(3)利用回归方程进行统计控制规定Y值的变化,通过控制x的围来实

现统计控制的目标。如已经得到了空气中NO2的浓度和汽车流量间的回归方程,即可通过控制汽车流量来控制空气中NO2的浓度。

4.应用直线回归的注意事项

(1)做回归分析要有实际意义; (2)回归分析前,最好先作出散点图; (3)回归直线不要外延。

第三章 概 率

3.1.1 —3.1.2随机事件的概率及概率的意义 1、基本概念:

(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件; (2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可

能事件;

(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件; (4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的

随机事件;

(5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,

称n次试验中事件A出现的次数nA为事件A出现的频数;称事件

nAA出现的比例fn(A)=n为事件A出现的概率:对于给定的随机事

件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。

Word 资料

.

(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与

nA试验总次数n的比值n,它具有一定的稳定性,总在某个常数附

近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率

3.1.3 概率的基本性质 1、基本概念:

(1)事件的包含、并事件、交事件、相等事件

(2)若A∩B为不可能事件,即A∩B=ф,那么称事件A与事件B互斥; (3)若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对

立事件;

(4)当事件A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);若事件A与

B为对立事件,则A∪B为必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)

2、概率的基本性质:

1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1; 2)当事件A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);

3)若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);

4)互斥事件与对立事件的区别与联系,互斥事件是指事件A与事件B在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A发生且事件B

Word 资料

.

不发生;(2)事件A不发生且事件B发生;(3)事件A与事件B同时不发生,而对立事件是指事件A

与事件B有且仅有一个发生,其包括两种情形;(1)

事件A发生B不发生;(2)事件B发生事件A不发生,对立事件互斥事件的特殊情形。

3.2.1 —3.2.2古典概型及随机数的产生

1、(1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性。 (2)古典概型的解题步骤; ①求出总的基本事件数;

②求出事件A所包含的基本事件数,然后利用公式P(A)

A包含的基本事件数=总的基本事件个数

3.3.1—3.3.2几何概型及均匀随机数的产生

1、基本概念:

(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型; (2)几何概型的概率公式:

构成事件A的区域长度(面积或体积)P(A)=试验的全部结果所构成的区域长度(面积或体积);

(2) 几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多

个;2)每个基本事件出现的可能性相等.

Word 资料

人教版高中数学知识点总结新

.两种方法:1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取样本。2.分层抽样是把异质性较强的总体分成一个个同质性较强的
推荐度:
点击下载文档文档为doc格式
58p0f3gpm68mpoj7ocb09o8y29wtcx00z18
领取福利

微信扫码领取福利

微信扫码分享