解(1)
?F?s??Y?s??2s?K?Y?s?s?4s?4(2)欲为稳定系统,则必须有4?k?0,故k?4。(3)当K=4时 ,系统为临稳定,即
H?s??4ss2?4故得临界稳定条件下的单位冲激响应应为
h?t??4cos2tU?t?0???2。6.12 图题6.12所示为H(s)的零、极点分布图,且知h?求该系统的H(s)。
gs in their beingll thin Ap1? arjωz1p2?j3j2e g?1oooδ?3?2ndz2?j1p3?-j3-j2答案
time a图题6.12
hing at ad f解得
H?s??Y?s?Ks?2F?s?s??4?K?s?4or somethin解
2???s?z1??s?z2?s?2?j1??s?2?j1?s?2??1s2?4s?5H?s??H0?H?H?H03?s?p1??s?p2??s?p3?0?s?3??s?j3??s?j3?0?s?3??s2?9?s?3s2?9s?27又有
?即
h(0)?2故得
be6.13 已知系统的微分方程为
inll things(1)求系统函数
H?s?? time ahing at and答案
Y?s?s?2s?3?3?F?s?s?5s2?8s?4?s?1??s?1?2 A(2)画出系统的三种形式的信号流图。
解 (1)
(2)直接形式的信号流图如图题6.13(a)所示。
thH?s??eir2s2?4s?5H(s)?3s?3s2?9s?27y///?t??5y//?t??8y/?t??4y?t??f/?t??3f?t?Y?s?F?s?;
ing? ar?e goos2?4s?5h(0)?limsH(s)?limH0S3?22s?3s?9s?27d for somethin (3)
H?s??1s?31??s?1s?2s?2 (4)
并联形式的信号流图如图题6.13(c)所示。
arings-11F(s)s-1e g1s-11Y(s)-4-5eir be-8(a) th1s-1-21s-1-211F(s)s-11 inooH?s??2?1?221??1??????2??s?1?s?2?2s?2s?1s?2?s?2?d fs-121Y(s)-2s-11-2(c)-1-1or级联形式的信号流图如图题6.13(b)所示。
gs-1(b)ll thin A1F(s)11nds-1-2 time ahing at a6.14 已知系统的信号流图如图题6.14(a)所示。
somethinY?s(1) 求系统函数
h(t);
H?s??Y?s?F?s?及单位冲激响应
(2) 写出系统的微分方程;
(3) 画出与H(s)相对应的一种等效电路,并求
11F(s)s-1-4-3£¨a£?s-131Y(s)答案
解 (1)
故得系统的单位冲激响应为
ll things in(2)系统的微分方程为
//// y?t??4y?t??3y?t??f?t??3f?t?e a约去。
timnd A注意,写系统的微分方程时,H(s)分子与分母中的公因式不能
thH?s??eirh(t)?e?tU(t) beY?s?s?3s?31?2??F?s?s?4s?3?s?1??s?3?s?1ing1?H(s)?(3)
t a3s?4?s3s ar1??3ss?3?1?3s
hing ae g出电路元件的值
ood for somethin根据上式即可画出与之对应的一种等效电路,如图题6.14(b)
所示,与之相对应的时域电路则如图
题6.14(c)所示。
11F(s)s-1-4s-1d f3or1Y(s)-3s+3?ing ar+1? beF?s?-3seir-ll thinf?t?1?1F3gs+nd A(c) in1H3? th(b)+y?t?-e g£¨a£?e a14
t a tim?s??????ht?Ut,Hs?e,大136.15 图题6.15(a)所示系统,其中
U?t?1?。求子系统的单位系统的h(t)??2?t?冲激响应h2?t?。
hing aooY?s?-图解 6 -
somethin