U2?s??KU?s?以上三式联解得
H?s??U2?s?K?2U1?s?s??3?K?s?1稳定。
(3)当K=2时,
H?s??32 ings6.8 已知系统函数
e a求系统的零状态响应yf?t?,零输入响应yx?t?,
全响应y(t)。
tim答案
nd All thin(1)写出描述系统响应y(t)与激励f(t)关系的微分方程;(2)画出系统的一种时域模拟图;
?/0???1,激励f(t)?e?tU?t?,(3)若系统的初始状态为y(0)?2,y?t ahing a解(1)因
H?s?? thH(s)?Y?s?s?5?2F?s?s?5s?6eir故得
t4?132h(t)?esintU(t)?V?23s?5s2?4s?6。
be222??2??2s2?s?1?1?2?3?23?1?2?3????s?????s????????2??2??2??2??ing are g(2)当K<3时,H?s?的极点位于s平面的左半开平面,系统
ood for somethin故得系统的微分方程为
y//?t??5y/?t??6y?t??f/?t??5f?t?(2)该系统的一种时域模拟图如图题6.8所示。
d fe goof(t)or15???5? aring?6故
Yf?F?s?H?s???p1??2,p2??3.故得零输入响应的通解形式为
time and All thin2e?t?3e?2t?e?3t?U?t?故得 yf?t???(4)求零输入响应yx?t?2系统的特征方程为s?5s?6?0,故得特征根为
gss?5s?52?31?????s?1?s2?5s?6?s?1??s?2??s?3?s?1s?2s?3 in?t ahing a/?2t?3t??yt??2Ae?3Aex12又
their(3)求零状态响应yf?t?F?s??yx?t??A1e?2t?A2e?3t be图解6.8
1s?1 somethiny0???y/?0????2A1?3A2?1故有 yx?/?yyx?0???y?0???A1?A2?2联解得A1?7,A2??5故得零输入响应为
ooH?s??yx?t??7e?2t?5e?3tU?t??2e?t?3e?2t?e?3tU?t??4e?2t?4e?3tU?t??2????????自由响应??????????瞬态响应???d f?1sor??e g?并画出一种s域模拟图。
ing beF(s)?1s?1 ar6.9 已知系统的框图如图题6.9所示,求系统函数
Y?s?F?s?,
eir1s th?a?gs in答案
ll thin
Ay(s)1s1sF(s)nd?1se a?32?1 tim?b?hing at a somethin1s?2y(s)???111?1??????Fs?Ys?Ys?Y?s?????ss?1ss?2??解 ??ss3?3s2?s?26.10 已知系统的框图如图题6.10所示。
(1)欲使系统函数
(2)当a=2时,欲使系统为稳定系统,求b的取值范围;
their(3)若系统函数仍为(1)中的H(s),求系统的单位阶跃响应g(t)。
beingH?s??Y?s?s?2F?s?s?5s?6,试求a,b的值;
ar?F(s) ine gs?s?1??s?a?ooy(s)?bs其中一种s域模拟如图解6.9(b)所示。
ll things图题6.10
e and A答案
bs??????Fs?Ys???s?1??s?a??Y?s?s?解(1) ? tim解得
H?s??Y?s?s?2F?s?s??a?1?s??a?b?t ahing ass?22故有 s?5s?6s??a?1?s??a?b?d f故解得
H?s??or somethin?a?1?5?故有 ?a?b?6解得a=4,b=2.
ss2?3s?2?b(3)
G?s??H?s?F?s??故得系统的单位阶跃响应为
eir beg?t??e?2t?e?3tU?t??6.11 已知系统的框图如图题6.11所示。
gsnd All thin(1)求系统函数
(2)欲使系统为稳定系统,求K的取值范围;
(3)在临界稳定条件下,求系统的单位冲激响应h(t)。
inH?s?? thY?s?F?s?;
e a?F(s)ing ars111-1????s2?5s?6ss2?5s?6s?2s?3F?s??1s,故
?ss?4s?42e gKy(s)图题6.11
故欲系统为稳定系统,就必须有2+b>0,b>-2.
hing at a tim答案
oo当a=2时,
H?s??d for somethin