写出当a=19时,b,c的值,并把b、c用含a的代数式表示出来。
3、4、5 5、12、13 7、24、25 9、40、41 …… 19,b、c 32+42=52 52+122=132 72+242=252 92+402=412 …… 192+b2=c2 3.在△ABC中,∠BAC=120°,AB=AC=103cm,一动点P从B向C以每秒2cm的速度移动,问当P点移动多少秒时,PA与腰垂直。
4.已知:如图,在△ABC中,AB=AC,D在CB的延长线上。 求证:⑴AD2-AB2=BD·CD
⑵若D在CB上,结论如何,试证明你的结论。
八、参考答案
DA课堂练习 1.略;
2.⑴∠A+∠B=90°;⑵CD=3.∠B,钝角,锐角;
BC11AB;⑶AC=AB;⑷AC2+BC2=AB2。 224.提示:因为S梯形ABCD = S△ABE+ S△BCE+ S△EDA,又因为S梯形ACDG=S△BCE= S△EDA=课后练习
1.⑴c=b2?a2;⑵a=b2?c2;⑶b=c2?a2
1(a+b)2, 211111 ab,S△ABE=c2, (a+b)2=2× ab+c2。 22222 41
?a2?b2?c2a2?1a2?12.? ;则b=,c=;当a=19时,b=180,c=181。
22?c?b?13.5秒或10秒。
4.提示:过A作AE⊥BC于E。 课后反思:
42
17.1 勾股定理(二)
教案总序号:11 时间: 一、教学目的
1.会用勾股定理进行简单的计算。 2.树立数形结合的思想、分类讨论思想。 二、重点、难点
1.重点:勾股定理的简单计算。 2.难点:勾股定理的灵活运用。 三、例题的意图分析
例1(补充)使学生熟悉定理的使用,刚开始使用定理,让学生画好图形,并标好图形,理清边之间的关系。让学生明确在直角三角形中,已知任意两边都可以求出第三边。并学会利用不同的条件转化为已知两边求第三边。
例2(补充)让学生注意所给条件的不确定性,知道考虑问题要全面,体会分类讨论思想。
例3(补充)勾股定理的使用范围是在直角三角形中,因此注意要创造直角三角形,作高是常用的创造直角三角形的辅助线做法。让学生把前面学过的知识和新知识综合运用,提高综合能力。 四、课堂引入
复习勾股定理的文字叙述;勾股定理的符号语言及变形。学习勾股定理重在应用。 五、例习题分析
例1(补充)在Rt△ABC,∠C=90°
⑴已知a=b=5,求c。 ⑵已知a=1,c=2, 求b。
43
⑶已知c=17,b=8, 求a。 ⑷已知a:b=1:2,c=5, 求a。 ⑸已知b=15,∠A=30°,求a,c。
分析:刚开始使用定理,让学生画好图形,并标好图形,理清边之间的关系。⑴已知两直角边,求斜边直接用勾股定理。⑵⑶已知斜边和一直角边,求另一直角边,用勾股定理的便形式。⑷⑸已知一边和两边比,求未知边。通过前三题让学生明确在直角三角形中,已知任意两边都可以求出第三边。后两题让学生明确已知一边和两边关系,也可以求出未知边,学会见比设参的数学方法,体会由角转化为边的关系的转化思想。
例2(补充)已知直角三角形的两边长分别为5和12,求第三边。
分析:已知两边中较大边12可能是直角边,也可能是斜边,因此应
A C 分两种情况分别进形计算。让学生知道考虑问题要全面,体会分类讨论思想。
例3(补充)已知:如图,等边△ABC的边长是6cm。
⑴求等边△ABC的高。 ⑵求S△ABC。
分析:勾股定理的使用范围是在直角三角形中,因此注意要 创造直角三角形,作高是常用的创造直角三角形的辅助线做 法。欲求高CD,可将其置身于Rt△ADC或Rt△BDC中, 但只有一边已知,根据等腰三角形三线合一性质,可求AD=CD=六、课堂练习 1.填空题
D B 1AB=3cm,则此题可解。 2 44
⑴在Rt△ABC,∠C=90°,a=8,b=15,则c= 。 ⑵在Rt△ABC,∠B=90°,a=3,b=4,则c= 。
⑶在Rt△ABC,∠C=90°,c=10,a:b=3:4,则a= ,b= 。 ⑷一个直角三角形的三边为三个连续偶数,则它的三边长分别为 。 ⑸已知直角三角形的两边长分别为3cm和5cm,,则第三边长为 。 ⑹已知等边三角形的边长为2cm,则它的高
A为 ,面积为 。
2.已知:如图,在△ABC中,∠C=60°,AB=43,AC=4,AD是BC边上的高,求BC的长。 C DB3.已知等腰三角形腰长是10,底边长是16,求这个等腰三角形的面积。 七、课后练习 1.填空题
在Rt△ABC,∠C=90°,
⑴如果a=7,c=25,则b= 。 ⑵如果∠A=30°,a=4,则b= 。 ⑶如果∠A=45°,a=3,则c= 。 ⑷如果c=10,a-b=2,则b= 。
⑸如果a、b、c是连续整数,则a+b+c= 。 ⑹如果b=8,a:c=3:5,则c= 。
2.已知:如图,四边形ABCD中,AD∥BC,AD⊥DC, AB⊥AC,∠B=60°,CD=1cm,求BC的长。 八、参考答案
BCAD 45