SCH南极数学同步教学设计 人教A版选修2-3 第二章《随机变量及其分布》
2.2.2事件的相互独立性(教学设计)
教学目标:
知识与技能:理解两个事件相互独立的概念。
过程与方法:能进行一些与事件独立有关的概率的计算。 情感、态度与价值观:通过对实例的分析,会进行简单的应用。 教学重点:独立事件同时发生的概率 教学难点:有关独立事件发生的概率计算 教学过程: 一、复习引入:
1.等可能性事件:如果一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是
1,这种事件叫等可能性事件 n2.等可能性事件的概率:如果一次试验中可能出现的结果有n个,而且所有结果都是等可能的,如果事件A包含m个结果,那么事件A的概率P(A)?m n3 互斥事件:不可能同时发生的两个事件.P(A?B)?P(A)?P(B)
一般地:如果事件A1,A2,L,An中的任何两个都是互斥的,那么就说事件A1,A2,L,An彼此互斥 4.对立事件:必然有一个发生的互斥事件.P(A?A)?1?P(A)?1?P(A) 5.互斥事件的概率的求法:如果事件A1,A2,L,An彼此互斥,那么
P(A1?A2?L?An)=P(A1)?P(A2)?L?P(An) 6.条件概率:在事件A发生的条件下,事件B发生的条件概率:P(B|A)?P(AB) P(A)乘法公式:P(AB)?P(B|A)?P(A). 二、师生互动,新课讲解:
思考:三张奖券中只有一张能中奖,现分别由三名同学有放回地抽取,事件A为“第一名同学没有抽到中奖奖券”, 事件B为“最后一名同学抽到中奖奖券”. 事件A的发生会影响事件B 发生的概率吗?
显然,有放回地抽取奖券时,最后一名同学也是从原来的三张奖券中任抽一张,因此第一名同学抽的结果对最后一名同学的抽奖结果没有影响,即事件A的发生不会影响事件B 发生的概率.于是
P(B| A)=P(B),
P(AB)=P( A ) P ( B |A)=P(A)P(B).
1
SCH南极数学同步教学设计 人教A版选修2-3 第二章《随机变量及其分布》
1.相互独立事件的定义:
设A, B为两个事件,如果 P ( AB ) = P ( A ) P ( B ) , 则称事件A与事件B相互独立(mutually independent ) .
事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件 若A与B是相互独立事件,则A与B,A与B,A与B也相互独立 2.相互独立事件同时发生的概率:P(A?B)?P(A)?P(B)
问题:甲坛子里有3个白球,2个黑球,乙坛子里有2个白球,2个黑球,从这两个坛子里分别摸出1个球,它们都是白球的概率是多少?
事件A:从甲坛子里摸出1个球,得到白球;事件B:从乙坛子里摸出1个球,得到白球 “从这两个坛子里分别摸出1个球,它们都是白球”是一个事件,它的发生,就是事件A,B同时发生,记作A?B.(简称积事件)
从甲坛子里摸出1个球,有5种等可能的结果;从乙坛子里摸出1个球,有4种等可能的结果于是从这两个坛子里分别摸出1个球,共有5?4种等可能的结果同时摸出白球的结果有3?2种所以从这两个坛3?23?. 5?4103另一方面,从甲坛子里摸出1个球,得到白球的概率P(A)?,从乙坛子里摸出1个球,得到白
52球的概率P(B)?.显然P(A?B)?P(A)?P(B).
4子里分别摸出1个球,它们都是白球的概率P(A?B)?这就是说,两个相互独立事件同时发生的概率,等于每个事件发生的概率的积一般地,如果事件A1,A2,L,An相互独立,那么这n个事件同时发生的概率,等于每个事件发生的概率的积,
即 P(A1?A2?L?An)?P(A1)?P(A2)?L?P(An). 3.对于事件A与B及它们的和事件与积事件有下面的关系:
P(A?B)?P(A)?P(B)?P(A?B) 例题选讲:
例 1(课本P54例3)某商场推出二次开奖活动,凡购买一定价值的商品可以获得一张奖券.奖券上有一个兑奖号码,可以分别参加两次抽奖方式相同的兑奖活动.如果两次兑奖活动的中奖概率都是 0 . 05 ,求两次抽奖中以下事件的概率:
(1)都抽到某一指定号码; (2)恰有一次抽到某一指定号码; (3)至少有一次抽到某一指定号码.
2
SCH南极数学同步教学设计 人教A版选修2-3 第二章《随机变量及其分布》
解: (1)记“第一次抽奖抽到某一指定号码”为事件A, “第二次抽奖抽到某一指定号码”为事件B ,则“两次抽奖都抽到某一指定号码”就是事件AB.由于两次抽奖结果互不影响,因此A与B相互独立.于是由独立性可得,两次抽奖都抽到某一指定号码的概率
P ( AB ) = P ( A ) P ( B ) = 0. 05×0.05 = 0.0025.
(2 ) “两次抽奖恰有一次抽到某一指定号码”可以用(AB)U(AB)表示.由于事件AB与AB互斥,根据概率加法公式和相互独立事件的定义,所求的概率为
P (AB)十P(AB)=P(A)P(B)+ P(A)P(B ) = 0. 05×(1-0.05 ) + (1-0.05 ) ×0.05 = 0. 095.
( 3 ) “两次抽奖至少有一次抽到某一指定号码”可以用(AB ) U ( AB)U(AB)表示.由于事件 AB , AB和AB 两两互斥,根据概率加法公式和相互独立事件的定义,所求的概率为 P ( AB ) + P(AB)+ P(AB ) = 0.0025 +0. 095 = 0. 097 5.
变式训练1:甲、乙二射击运动员分别对一目标射击1次,甲射中的概率为0.8,乙射中的概率为0.9,求:
(1)2人都射中目标的概率; (2)2人中恰有1人射中目标的概率; (3)2人至少有1人射中目标的概率; (4)2人至多有1人射中目标的概率?
解:记“甲射击1次,击中目标”为事件A,“乙射击1次,击中目标”为事件B,则A与B,A与B,
A与B,A与B为相互独立事件,
(1)2人都射中的概率为:
P(A?B)?P(A)?P(B)?0.8?0.9?0.72,
∴2人都射中目标的概率是0.72.
(2)“2人各射击1次,恰有1人射中目标”包括两种情况:一种是甲击中、乙未击中(事件A?B发生),另一种是甲未击中、乙击中(事件A?B发生)根据题意,事件A?B与A?B互斥,根据互斥事件的
概率加法公式和相互独立事件的概率乘法公式,所求的概率为:
P(A?B)?P(A?B)?P(A)?P(B)?P(A)?P(B)
?0.8?(1?0.9)?(1?0.8)?0.9?0.08?0.18?0.26
∴2人中恰有1人射中目标的概率是0.26.
(3)(法1):2人至少有1人射中包括“2人都中”和“2人有1人不中”2种情况,其概率为
3
SCH南极数学同步教学设计 人教A版选修2-3 第二章《随机变量及其分布》
P?P(A?B)?[P(A?B)?P(A?B)]?0.72?0.26?0.98.
(法2):“2人至少有一个击中”与“2人都未击中”为对立事件,
2个都未击中目标的概率是P(A?B)?P(A)?P(B)?(1?0.8)(1?0.9)?0.02, ∴“两人至少有1人击中目标”的概率为P?1?P(A?B)?1?0.02?0.98. (4)(法1):“至多有1人击中目标”包括“有1人击中”和“2人都未击中”, 故所求概率为:
P?P(A?B)?P(A?B)?P(A?B) ?P(A)?P(B)?P(A)?P(B)?P(A)?P(B)
?0.02?0.08?0.18?0.28.
(法2):“至多有1人击中目标”的对立事件是“2人都击中目标”, 故所求概率为P?1?P(A?B)?1?P(A)?P(B)?1?0.72?0.28 例2:在一段线路中并联着3个自动控制的常开开关,只要其中有1个开关能够闭合,线路就能正常工作假定在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率
JAJBJC解:分别记这段时间内开关JA,JB,JC能够闭合为事件A,B,C.
由题意,这段时间内3个开关是否能够闭合相互之间没有影响根据相互独立事件的概率乘法公式,这
段时间内3个开关都不能闭合的概率是
P(A?B?C)?P(A)?P(B)?P(C)
??1?P(A)??1?P(B)??1?P(C)? ?(1?0.7)(1?0.7)(1?0.7)?0.027
∴这段时间内至少有1个开关能够闭合,,从而使线路能正常工作的概率是
1?P(A?B?C)?1?0.027?0.973.
答:在这段时间内线路正常工作的概率是0.973.
变式训练2(1):如图添加第四个开关JD与其它三个开关串联,在某段时间内此开关能够闭合的概率也是0.7,计算在这段时间内线路正常工作的概率 4
SCH南极数学同步教学设计 人教A版选修2-3 第二章《随机变量及其分布》
(?1?P(A?B?C)??P(D)?0.973?0.7?0.6811)
??变式训练2(2):如图两个开关串联再与第三个开关并联,在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率 方法一:P(A?B?C)?P(A?B?C)?P(A?B?C)?P(A?B?C)?P(A?B?C)
?P(A)?P(B)?P(C)?P(A)?P(B)?P(C)?P(A)?P(B)?P(C)?P(A)?P(B)?P(C)?P(A)?P(B)?P(C)
JAJB?0.847
JC方法二:分析要使这段时间内线路正常工作只要排除JC开且JA与JB至少有1个开的情况 1?P(C)?1?P(A?B)??1?0.3?(1?0.72)?0.847
例3.已知某种高炮在它控制的区域内击中敌机的概率为0.2.
(1)假定有5门这种高炮控制某个区域,求敌机进入这个区域后未被击中的概率;
(2)要使敌机一旦进入这个区域后有0.9以上的概率被击中,需至少布置几门高炮?(列式不计算) 分析:因为敌机被击中的就是至少有1门高炮击中敌机,故敌机被击中的概率即为至少有1门高炮击中敌机的概率 解:(1)设敌机被第k门高炮击中的事件为AK(k=1,2,3,4,5),那么5门高炮都未击中敌机的事件为
A1?A2?A3?A4?A5.
∵事件A1,A2,A3,A4,A5相互独立, ∴敌机未被击中的概率为
P(A1?A2?A3?A4?A5)=P(A1)?P(A2)?P(A3)?P(A4)?P(A5)
4?(1?0.2)5?()5 5∴敌机未被击中的概率为().
(2)至少需要布置n门高炮才能有0.9以上的概率被击中,仿(1)可得:
4554n54n4n1∴令1?()?0.9,∴()?
5510敌机被击中的概率为1-() 两边取常用对数,得n?
1?10.3 1?3lg25