13.如图甲,四边形OABC的边OA、OC分别在x轴、y轴的正半轴上,顶点在B点的抛物线交x轴于点A、D,交y轴于点E,连接AB、AE、BE.已知tan?CBE?(1)求抛物线的解析式及顶点B的坐标; (2)求证:CB是△ABE外接圆的切线;
(3)试探究坐标轴上是否存在一点P,使以D、E、P为顶点的三角形与△ABE相似,若存在,直接写出点P的坐标;若不存在,请说明理由;
(4)设△AOE沿x轴正方向平移t个单位长度(0<t≤3)时,△AOE与△ABE重叠部分的面积为s,求s与t之间的函数关系式,并指出t的取值范围.
1,A(3,0),D(-1,0),E(0,3). 3
第 12 页
14.如图,⊙C的内接△AOB中,AB=AO=4,tan?AOB?32,抛物线y?ax?bx经过点A(4,0)与点4??2,6?.
(1)求抛物线的函数解析式;
(2)直线m与⊙C相切于点A,交y轴于点D.动点P在线段OB上,从点O出发向点B运动;同时动点Q在线段DA上,从点D出发向点A运动;点P的速度为每秒一个单位长,点Q的速度为每秒2个单位长,当PQ⊥AD时,求运动时间t的值;
(3)点R在抛物线位于x轴下方部分的图象上,当△ROB面积最大时,求点R的坐标.
第 12 页
15.如图,二次函数y?ax?2ax?3a(a?0)的图象与x轴交于A,B两点(点B在点A的右侧),与y轴的正半轴交于点C,顶点为D.若以BD为直径的⊙M经过点C. (1)请直接写出C,D的坐标(用含a的代数式表示); (2)求抛物线的函数表达式;
(3)⊙M上是否存在点E,使得∠EDB=∠CBD?若存在,请求出所满足的条件的E的坐标;若不存在,请2说明理由.
第 12 页
16.如图,在平面直角坐标系中,O为原点,平行四边形ABCD的边BC在x轴上,D点在y轴上,C点坐标为(2,0),BC=6,∠BCD=60°,点E是AB上一点,AE=3EB,⊙P过D,O,C三点,抛物线y=ax2+bx+c过点D,B,C三点.
(1)请直接写出点B、D的坐标:B( ),D( ); (2)求抛物线的解析式; (3)求证:ED是⊙P的切线;
(4)若点M为抛物线的顶点,请直接写出平面上点N的坐标,使得以点B,D,M,N为顶点的四边形为平行四边形.
第 12 页
17.如图,⊙E的圆心E(3,0),半径为5,⊙E与y轴相交于A、B两点(点A在点B的上方),与x轴的正半轴相交于点C;直线l的解析式为y=(1)求抛物线的解析式;
(2)判断直线l与⊙E的位置关系,并说明理由;
(3) 动点P在抛物线上,当点P到直线l的距离最小时,求出点P的坐标及最小距离.
3x+4,与x轴相交于点D;以C为顶点的抛物线经过点B. 4
第 12 页