a3?c33a3?a3322a?c?()a?c?()a2?c2?b21?22???此时cosB?, 得到B=. 22ac2ac2a232a3?c3322a?c?()112?, 为此只需证明cosB?. 即证明cosB?2ac22即 4(a2?ac?c2)3?(a3?c3)2?[(a?c)(a2?ac?c2)]2,
2222即 4(a2?ac?c2)?(a?c)2, 即3(a?c)2?0. 显然.
8、因为v?1,所以u?w?3v?3,于是u对应的点P在以w对应的点M为圆心, 3为半经的圆C上,当u的辐角主值最小时,OP与圆C相切,而OM?5,PM?3, 则OP?4,于是所以
wu?w435,又的辐角主值???POM,cos??,sin??,
55u4u1612w5?43?3?i ???i??1?i,故?w2525u4?55?49、由条件③令m=0得f(0)=0;再令m=x,n=-x得:f(-x) =-f(x);所以f(x)在R上是奇函数.
设x1,x2∈R,且x2>x1,则x2-x1>0,由①和③知: f?x2?x1??f?x2??f??x1??f?x2??f?x1?>0,所以f?x?在R上是增函数. 由f(1)=2及③可得:24=12f(1)=f(12),所以f(3x2)+f(4y2)?24,
22即f(3x2+4y2)?f(12),从而A??x,y?3x?4y?12;
??由f(x) -f(ay)+f(3)=0得:f(x-ay+3)=f(0),从而B?由f?x????x,y?x?ay?3?0?;
1fy2?f?a?得:f?2x?a??f?y2?,从而C??x,y?y2?2x?2a; 21315?a?2; 由A∩B≠Ф可求得:a?;由A∩C≠Ф可求得:?63?1315??15?,2?. 所以实数a的取值范围是:??,????633????y22?1.①, 焦点坐标?3,0,不防设l过右焦点F:3,0. 10、x?22?若l?x轴,则A,B坐标为3,?2,3,?2??AOB?2arctan>,矛盾!
32????????????故可设l的方程为y?kx?3.② 设A:(x1,y1),B(x2,y2). ∵?AOB????2,∴
y1y2???1?x1x2?y1y2?0. ③ x1x222由①、②,得2x?kx?3??2?2?k2?2x2?23k2x?3k2?2?0. ④
????k2=2时,④只有一个根,至多只能对应一个交点,不可能.故k2≠2.
23k2由韦达定理得 x1?x2?2, ⑤
k?23k2?2 x1x2?2. ⑥
k?2由②、⑤、⑥,得y1y2?k2x1?3x2?3?k2x1x2?3?x1?x2??3
??????
?3k2?26k23k2?6?4k2?k??k2?2?k2?2?k2?2????k2?2. ⑦
??3k2?24k22?k2?2?0?2?0,矛盾! 由③、⑥、⑦,得2k?2k?2k?2故不存在过右焦点的直线l,同时满足条件(1)、(2).同理,也不存在过左焦点的直线满足题意.
2
11、由已知:
?ai?1ni?1???ai?1?,从而还有?ai?1???ai?1?
i?1i?1i?1nn?1n?1以上两式相减,得?an?1?1?(1)若数列中所有项均为1,则
?ai?12003ni?an?1?1, 故an?1?1或?ai?1. ①
i?1n?ai?1i. ?i??1?i??j?2005003i?1j?020032002(2)若数列中所有项不均为1,设a1=a2=?am?1=1(m=1时该式省去),am≠1.
①中,取n=m, 有am+1=1或a1a2?am?1am=1.
由前面所设,a1a2?am-1am=am ≠1∴am+1=1.设am+k=am+k-1=?am+1=1,
则①中,取n=m+k, 有am+ k+1=1或a1a2?am+k=1,同理,只可能是am+ k+1=1. 另外,由下式②可说明,当am ≠1,n?m时,可以保证条件成立:
?ai?1mi?am?ai?am??am?1??1???ai?1??1???ai?1?.②
1?i?ni?m1?i?ni?mi?1n当m>2003时,归为(1)的情形.
2003若1?m?2003,则
?ai?1i. ?i??j?am?m?1?m??j?0?2002?2003001j?0j?020022002综上,当a1=a2=?a2002=1,a2003=2003时,取最小值,等于2003001.