电大经济数学基础形成性考核册及参考答案
(一)填空题 1.limx?0x?sinx?___________________.答案:0 x2.设
?x2?1,x?0,在x?0处连续,则k?________.答案:1 f(x)???k,x?0?y?x在(1,1)的切线方程是 .答案:y?3.曲线
11x? 224.设函数5.设
f(x?1)?x2?2x?5,则f?(x)?____________.答案:2x
ππf(x)?xsinx,则f??()?__________.答案:?
22(二)单项选择题 1. 函数
y?x?1的连续区间是( D ) 2x?x?2A.(??,1)?(1,??) B.(??,?2)?(?2,??)
C.(??,?2)?(?2,1)?(1,??) D.(??,?2)?(?2,??)或(??,1)?(1,??) 2. 下列极限计算正确的是( B )
A.limxxx?0?1 B.lim?x?0xx?1
C.lim3. 设yx?0xsin1sinx?1 D.lim?1
x??xxB ).
?lg2x,则dy?(
A.
11ln101dx B.dx C.dx D.dx 2xxln10xx4. 若函数f (x)在点x0处可导,则( B )是错误的. A.函数f (x)在点x0处有定义 B.limx?x0f(x)?A,但A?f(x0)
C.函数f (x)在点x0处连续 D.函数f (x)在点x0处可微 5.当x?0时,下列变量是无穷小量的是( C ).
A.2 B.(三)解答题 1.计算极限
xsinx C.ln(1?x) D.cosx xx2?3x?21??(1)lim
x?12x2?1原式?lim(x?1)(x?2)x?1(x?1)(x?1)x?2 ?limx?1x?11??2 (2)limx2?5x?61x?2x2?6x?8?2 原式=lim(x-2)(x-3)x?2(x-2)(x-4)
?limx?3x?2x?4
?12(3)lim1?x?1x?0x??12
原式=lim(1?x?1)(1?x?1)x?0x(1?x?1)=lim?1x?01?x?1
x2(4)lim?3x?5x??3x2?2x?4?13 1?3原式=
x?5x234=
13?3 x?x2(5)limsin3xx?0sin5x?35
sin3x原式=33x5limx?0sin5x =
35 5x(6)limx2?4x?2sin(x?2)?4 原式=limx?2x?2sin(x?2)
x?2lim?2(x?2)=
x = 4
limsin(x?2)x?2x?2=?12
2.设函数
1?xsin?b,x?0?x?f(x)??a,x?0,
?sinxx?0?x?f(x)在x?0处有极限存在? f(x)在x?0处连续.
x?0?问:(1)当a,b为何值时,
(2)当a,b为何值时,解:(1)lim当 (2).
x?0?f(x)?b,limf(x)?1
limf(x)?f(0)?1
x?0a?b?1时,有当a?b?1时,有limf(x)?f(0)?1
x?0 函数f(x)在x=0处连续. 3.计算下列函数的导数或微分: (1)
y?x2?2x?log2x?22,求y?
答案:(2)
y??2x?2xln2?1
xln2y?ax?b,求y?
cx?d答案:
y??1a(cx?d)?c(ax?b)ad?bc?(cx?d)2(cx?d)2,求
(3)
y?3x?5y?
3?3答案:y???(3x?5)2
2(4)
y?x?xex,求y?
答案:
y??12x?(ex?xex)=
12x?ex?xex
(5)
y?eaxsinbx,求dy
y??(eax)?(sinbx?eax(sinbx)?答案:∵
?aeaxsinbx?beaxcosbx?eax(sinbx?bcosbx)ax
∴dy?e1x(asinbx?bcosbx)dx
(6)
y?e?xx,求dy
113x?y??e?x 答案:∵2x2311x?2ex)dx ∴dy?(2x(7)
y?cosx?e?x2,求dy
2答案:∵
y???sinx?(x)??e?x?(?x2)?
sinx?2xe?x2x22 =?
∴dy?(?sinx?2xe?x)dx
2x(8)
y?sinnx?sinnx,求y?
答案:
y??nsinn?1x?cosx?ncosnx
(9)
y?ln(x?1?x2),求y?
答案:
y??1x?1?x1?2?(x?1?x2)? =1?x2?x1?x21x?1?x
2?(1?x1?x2)
=
x?1?xcot1x2 =
11?x2(10)
y?2?1x1?3x2?2xx,求
y?
11?12y??2?ln2?(cos)??(x?x6?2)?x答案:
1cos1111??2?2xln2?sin??xx2x36x5cos
4.下列各方程中
y是x的隐函数,试求y?或dy
(1) 方程两边对x求导: 2x?2y?y??y?xy??3?0 x)y??y?2x?3
(2y? 所以 dy?y?2x?3dx
2y?xy)(1?y?)?exy?(y?xy?)?4 y)?xexy]y??4?cos(x?y)?yexy
(2) 方程两边对x求导: cos(x? [cos(x?4?cos(x?y)?yexy 所以 y??cos(x?y)?xexy5.求下列函数的二阶导数: (1)
y?ln(1?x2),求y??
答案: (1)
y??2x1?x2
2(1?x2)?2x?2x2?2x2 y????22(1?x)(1?x2)2 (2)
y??(x?121?1?31?x)???x2?x2
22123?3?51x2?x2 y???44
y?(1)?31??1 44作业(二)
(一)填空题 1.若2.
?f(x)dx?2x?2x?c,则f(x)?___________________.答案:2xln2?2
?(sinx)?dx?________.答案:sinx?c ?f(x)dx?F(x)?c,则?xf(1?x2)dx? .答案:?de2ln(1?x)dx?___________.答案:0 ?1dx??0x3. 若
1F(1?x2)?c 24.设函数
5. 若P(x)11?t2dt,则P?(x)?__________.答案:?11?x2
(二)单项选择题
1. 下列函数中,( D )是xsinx的原函数. A.
2
11cosx2 B.2cosx2 C.-2cosx2 D.-cosx2 22?d(cosx)
B.ln2. 下列等式成立的是( C ). A.sinxdx1xdx?d()
xC.2xdx?11dx?dx d(2x) D.
ln2x3. 下列不定积分中,常用分部积分法计算的是( C ). A.
2x1?xdx C.?xsin2xdx D.?, B.cos(2x?1)dx??xdx
1?x24. 下列定积分计算正确的是( D ). A.
?1?12xdx?2 B.?16?1dx?15
???C.
????(x2?x3)dx?0 D.?sinxdx?0
5. 下列无穷积分中收敛的是( B ).