做出判断,如果是,则给出其身份。
(5)基于人脸图像比对的身份验证
即人脸确认(Face Verification)问题。系统在输入人脸图像的同时输入一个用户宣称的该人脸的身份信息,系统要对该输入人脸图像的身份与宣称的身份是否相符作出判断。 1.5 论文的内容及组织
第二章主要介绍人脸识别系统中所用到的仿真软件Matlab,介绍了在人脸图像识别过程中所需要的图像处理技术,包括:一些基本操作、格式转换、图像增强等。并做了一个Matlab图像处理功能的实例
第三章主要始涉三个方面:首先是对人脸识别系统的构成做详细论述;其次就是对人脸识别过程中的关键环节人脸检测、特征提取和图像预处理做详细介绍;最后就是Matlab在人脸识别系统中的具体应用,即人脸图像识别的具体技术,并用Matlab进行仿真试验并得到结果。
第四章是对人脸图像识别体系构架的设计,并给出了人脸识别用到的理论知识即直方图差异对比,并编写matlab代码实现人脸图像识别。
第五章总结了全文的工作并对以后的需要进一步研究的问题进行了展望。
5
第二章 图像处理的Matlab实现 2.1 Matlab简介
由Math Work公司开发的Matlab语言语法限制不严格,程序设计自由度大,程序的可移植性好。Matlab还推出了功能强大的适应于图像分析和处理的工具箱,常用的有图像处理工具箱、小波分析工具箱及数字信号处理工具箱。利用这些工具箱,我们可以很方便的从各个方面对图像的性质进行深入的研究。Matlab图像处理工具箱支持索引图像、RGB图像、灰度图像、二进制图像并能操作.bmp、.jpg、.tif等多种图像格式文件。 2.2 数字图像处理及过程
图像是人类获取信息、表达信息和传递信息的重要手段。利用计算机对图像进行去除噪声、增强、复原、分割、提取特征等的理论、方法和技术称为数字图像处理。数字图像处理技术已经成为信息科学、计算机科学、工程科学、地球科学等诸多方面的学者研究图像的有效工具。数字图像处理主要包括图像变换、图像增强、图像编码、图像复原、图像重建、图像识别以及图像理解等内容。 2.2.1图像处理的基本操作
读取和显示图像可以通过imread()和imshow()来实现;图像的输出用imwrite()函数就可以很方便的把图像输出到硬盘上;另外还可以
6
用imcrop()、imrisize()、imrotate()等来实现图像的裁剪、缩放和旋转等功能。
2.2.2图像类型的转换
Matlab支持多种图像类型,但在某些图像操作中,对图像的类型有要求,所以要涉及到对图像类型进行转换。Matlab7.0图像处理工具箱为我们提供了不同图像类型相互转换的大量函数,如mat2gray()函数可以将矩阵转换为灰度图像,rgb2gray()转换RGB图像或颜色映像表为灰度图像。在类型转换的时候,我们还经常遇到数据类型不匹配的情况,针对这种情况,Matlab7.0工具箱中,也给我们提供了各种数据类型之间的转换函数,如double()就是把数据转换为双精度类型的函数。 2.2.3图像增强
图像增强的目的是为了改善图像的视觉效果,提高图像的清晰度和工艺的适应性,以及便于人与计算机的分析和处理,以满足图像复制或再现的要求。图像增强的方法分为空域法和频域法两大类,空域法主要是对图像中的各个像素点进行操作;而频域法是在图像的某个变换域内对整个图像进行操作,并修改变换后的系数,如傅立叶变换、DCT变换等的系数,然后再进行反变换,便可得到处理后的图像。下面以空域增强法的几种方法加以说明。
(1).灰度变换增强
有多种方法可以实现图像的灰度变换,其中最常用的就是直方图
7
变换的方法,即直方图的均衡化。这种方法是一种使输出图像直方图近似服从均匀分布的变换算法。Matlab7.0图像处理工具箱中提供了图像直方图均衡化的具体函数histeq(),同时我们可以用函数imhist()函数来计算和显示图像的直方图。
(2).空域滤波增强
空域滤波按照空域滤波器的功能又可分为平滑滤波器和锐化滤波器。平滑滤波器可以用低通滤波实现,目的在于模糊图像或消除噪声;锐化滤波器是用高通滤波来实现,目的在于强调图像被模糊的细节。在Matlab中,各种滤波方法都是在空间域中通过不同的滤波算子实现,可用fspecial()函数来创建预定义的滤波算子,然后可以使用imfilter()或filter2()函数调用创建好的滤波器对图像进行滤波。 2.2.4边缘检测
数字图像的边缘检测是图像分割、目标区域识别、区域形状提取等图像分析领域十分重要的基础,也是图像识别中提取图像特征的一个重要属性。边缘检测算子可以检查每个像素的邻域并对灰度变化率进行量化,也包括对方向的确定,其中大多数是基于方向导数掩模求卷积的方法。常用的有Sobel算子,Prewitt算子,Roberts算子,Log算子等。Matlab7.0工具箱中提供的edge()函数可以进行边缘检测,在其参数里面,可以根据需要选择合适的算子及其参数。
8
2.3图像处理功能的Matlab实现实例
本文通过运用图像处理工具箱的有关函数对一人脸的彩色图像进行处理。
1)图像类型的转换
因后面的图像增强,边缘检测都是针对灰度图像进行的,而我们的原图是RGB图像,所以首先我们要对原图类型进行转换。实现过程代码如下:
i=imread('f:\\face1.jpg');j=rgb2gray(i); imshow(j);imwrite(j,'f:\\face1.tif') 效果图2.1
图2.1
2)图像增强
(1)灰度图像直方图均衡化
通过比较原图和直方图均衡化后的图像可见,图像变得更清晰,而且均衡化后的直方图比原直方图的形状更理想。该部分的程序代码如
9
【毕业论文】基于matlab的人脸识别系统设计与仿真(含matlab源程序)



