体积和体积单位
教学目标:
1、使学生理解体积的意义,认识常用的体积单位:立方米、立方分米、立方厘米,培养初步的空间观念。
2、使学生知道计量一个物体的体积有多大,要看它包含多少个体积单位。 教学重点:
1、建立体积概念。 2、认识体积单位。 教学难点:
建立体积概念。 教学设计:
一、出示课题,学习目标
1、理解体积的意义,认识常用的体积单位:立方米、立方分米、立方厘米,培养初步的空间观念。
2、知道计量一个物体的体积有多大,要看它包含多少个体积单位。 二、出示自学指导 认真看课本总结 1、体积的意义。 /2、体积单位: 三、学生看书,自学 四、效果检测
学生概括:物体所占空间的大小叫做物体的体积。(板书) 常用的体积单位有:立方米、立方分米、立方厘米。 练一练:选择恰当的单位:
(1)、橡皮的体积用( ),火车的体积用( ),书包的体积用( )。(2)、练习:
①说一说:测量篮球场的大小用( )单位。 测量学校旗杆的高度用( )单位
测量一只木箱的体积要用( )单位。 ②、 一个正方体的棱长是1( ),表面积是( ),体积是( )。(你想怎样填?)
③、判断:一只长方体纸箱,表面积是52平方分米,体积是24立方分米,它的表面积大。( ) 五、总结:
这节课我们学习了体积的意义和体积单位。你有什么收获? 板书设计:
体积和体积单位
物体所占空间的大小叫做物体的体积。
常用的体积单位有:立方米、立方分米、立方厘米。
课后反思:
长方体、正方体的体积计算方法
教学内容:
推导长正方体的体积计算方法 教学目标:
1、使学生理解长方体和正方体体积公式的推导,能运用公式进行计算。 2、培养学生空间和空间想象能力。 教学重点:
长正方体体积公式的推导。 教学难点:运用公式计算。 教学设计:
一、出示课题,学习目标
理解长方体和正方体体积公式的推导,能运用公式进行计算。 二、出示自学指导
认真看课本观察:每排个数、排数、层数与体积有什么关系?如何计算长方体的体积?
三、学生看书,自学 四、效果检测
如何计算长方体的体积? 板书:长方体体积=长×宽×高 字母公式:V=abh 五、练习
1、一个长方体,长7厘米,宽4厘米,高3厘米,它的面积是多少?
根据长方体和正方体的关系,你能想出正方体的体积怎样计算吗?
正方体体积=棱长×棱长×棱长 V=aaa=a3 读作a的立方 3、一块正方体的石料,棱长是6分米,这块石料的体积是多少立方分米? 请同学们摆一个体积是24立方厘米的长方体,摆后说一说长、宽、高各是几厘米?
长方体体积=长×宽×高 提问:长方体的长、宽、高不同,体积相同这是为什么?
六、小结:
怎样计算长、正方体的体积?计算长方体和正方体的体积有没有其他的方法?这个问题我们下节课研究。 七、作业: 课后反思:
练 习
教学内容:
练习
教学目标:
1、在理解了长正方体体积公式,能运用公式进行计算的基础上,进一步研究求长正方体体积的其它计算公式。
2、进一步培养学生空间观念和空间想象能力。 教学重点:
1、计算长正方体体积的其它公式。 2、逆向思维的题可以用方程方 教学难点:
几何知识与一般应用题的综合题。 教学设计: 一、 复习:
1.如何计算长正方体的体积?及字母公式
长方体的体积=长×宽×高 正方体体积=棱长×棱长×棱长 二、新授:
长方体或正方体底面的面积叫做底面积 。 长方体和正方体的底面积怎样求呢?
长方体的体积=长×宽×高 正方体体积=棱长×棱长×棱长 底面积 底面积
所以长正方体的体积也可以这样来计算: 长正方体的体积=底面积×高 V =sh 三、 巩固练习:
1、长方体的底面积是24平方厘米,高是5厘米。它的体积是多少? V=sh 24×5=120(立方厘米)
2、一根长方体木料,长5厘米,横截面的面积是0.06平方厘米。这根木料的体积是多少?
理解横截面积的含义,体会长方体不同放置,说法各不相同。 出示另一种计算方法:长方体体积=横截面积×长
3、家具厂订购500根方木,每根方木横截面的面积是24平方分米,长3米。这根木料一共是多少平方米?
理解面积单位和长度单位要一致。但不可能相同。 4、练一练
(1)、一块长方体的木板,体积是90立方分米。这块木板的长是60分米,宽是
3
分
米
。
这
块
木
板
的
厚
度
是
多
少
分
米? (2)、一根长方体水泥柱,体积是1立方米,高是4米,它的底面积是多少? (选
择方法解答)
1、学校要修长50米,宽42米,的长方形操场。先铺10厘米的三合土,再铺5厘米的煤渣。需要三合土和煤渣各多少立方米?
2、有一块棱长是10厘米的正方体钢坯,锻造成宽和高都是5厘米的长方体钢材,求长方体钢材的长。
3、用15根规格完全相同的木板堆成一个体积是3.6立方米的长方体。已知每根木板宽0.3米,厚0.2米,求每根木板的长。 四、小结:今天,我们又学了哪些知识?你有什么收获? 五、作业:
体积单位的进率
教学内容: 体积单位的进率 教学目标:
在认识体积单位,知道体积单位与长度单位的联系和区别基础上,学习掌握体积单位间的进率与化、聚方法。学习计算重量的解答方法。
教学难点:体积单位的进率。计算物体的重量。 教学难点:体积单位的进率的化聚。 教学设计: 一、复习检查:
1、计算体积用 单位,常用的体积单位有哪些? 2、填空:
1厘米 1平方厘米 1立方厘米 单位 单位 单位
说一说:计算长度用 单位,计算面积用 单位,计算体积用 单位。 1米=( )分米, 1平方米=( )平方分米 1分米=( )厘米 1 平方分米=( )平方厘米 二、新课:
1、体积单位之间的进率:
(1)棱长是1分米的正方体,体积是1×1×1=1立方分米。想一想它的体积是多少立方厘米?
棱长改用厘米作单位:体积是10×10×10=1000立方厘米
底面积是1平方分米,也就是100平方厘米,利用体积的计算公式100×10=1000平方厘米
通过刚才的计算你能告诉大家什么?1立方分米=1000立方厘米 (2)根据上面的方法,你能推算出1平方米等于多少平方分米吗? 棱长是1分米的正方体,体积是1×1×1=1立方分米 棱长改用厘米作单位:体积是10×10×10=1000立方厘米 1立方米=1000立方分米(板书)
(3)小结: 相邻的体积单位之间的进率是(1000)。 (4)练习:
5立方米=( )立方分米 1.5立方米=( )立方分米 2400立方分米=( )立方米