好文档 - 专业文书写作范文服务资料分享网站

高一数学必修一第一章集合与函数知识点总结精华版

天下 分享 时间: 加入收藏 我要投稿 点赞

和函数值的字母无关);②定义域一致 (两点必须同时具备)

(见课本21页相关例2) 2.值域 : 先考虑其定义域 (1)观察法 (2)配方法 (3)代换法

3. 函数图象知识归纳

(1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 . (2) 画法 A、 B、 1) 平移变换 2) 伸缩变换 3) 对称变换 4.区间的概念

(1)区间的分类:开区间、闭区间、半开半闭区间 (2)无穷区间

(3)区间的数轴表示. 5.映射

一般地,设A、B是两个非空的集合,如果按某一个

描点法: 图象变换法

常用变换方法有三种

确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A?B为从集合A到集合B的一个映射。记作“f(对应关系):A(原象)?B(象)” 对于映射f:A→B来说,则应满足:

(1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;

(2)集合A中不同的元素,在集合B中对应的象可以是同一个;

(3)不要求集合B中的每一个元素在集合A中都有原象。 6.分段函数

(1)在定义域的不同部分上有不同的解析表达式的函数。 (2)各部分的自变量的取值情况.

(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集. 补充:复合函数

如果y=f(u)(u∈M),u=g(x)(x∈A),则 y=f[g(x)]=F(x)(x∈A) 称为f、g的复合函数。

二.函数的性质

1.函数的单调性(局部性质) (1)增函数

设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1

如果对于区间D上的任意两个自变量的值x1,x2,当x1

如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.

(3).函数单调区间与单调性的判定方法 (A) 定义法:

1 任取x1,x2∈D,且x1

2 作差f(x1)-f(x2); ○

3 变形(通常是因式分解和配方); ○

4 定号(即判断差f(x1)-f(x2)的正负); ○

5 下结论(指出函数f(x)在给定的区间D上的单调性). ○

(B)图象法(从图象上看升降) (C)复合函数的单调性

复合函数f[g(x)]的单调性与构成它的函数u=g(x),

y=f(u)的单调性密切相关,其规律:“同增异减”

注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集. 8.函数的奇偶性(整体性质) (1)偶函数

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.

(2).奇函数

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数. (3)具有奇偶性的函数的图象的特征

偶函数的图象关于y轴对称;奇函数的图象关于原点对称.

利用定义判断函数奇偶性的步骤:

1首先确定函数的定义域,并判断其是否关于原点对○称;

2确定f(-x)与f(x)的关系; ○

3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,○

则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.

注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 . 9、函数的解析表达式

(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.

(2)求函数的解析式的主要方法有: 1) 凑配法 2) 待定系数法 3) 换元法

4) 消参法 10.函数最大(小)值(定义见课本p36页) 1 利用二次函数的性质(配方法)求函数的最大(小)值 ○

2 利用图象求函数的最大(小)值 ○

3 利用函数单调性的判断函数的最大(小)值: ○

如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b); 如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b); 例题:

1.求下列函数的定义域: ⑴y?x2?2x?15x?3?3 ⑵y?1?(x?12)x?1

22.设函数f(x)的定义域为[0,1],则函数f(x)的定义域为_ _ 3.若函数f(x?1)的定义域为[?2,3],则函数f(2x?1)的定义域是 4.函数

?x?2(x??1)? f(x)??x2(?1?x?2)?2x(x?2)?,若f(x)?3,则x=

5.求下列函数的值域: ⑴y?x2?2x?3 (x?R) ⑵y?x2?2x?3 x?[1,2]

(3)y?x?1?2x (4)y?2?x2?4x?5 6.已知函数f(x?1)?x?4x,求函数f(x),f(2x?1)的解析式

7.已知函数f(x)满足2f(x)?f(?x)?3x?4,则f(x)= 。 8.设f(x)是R上的奇函数,且当x?[0,??)时,f(x)?x(1?

f(x)在

3x),则当x?(??,0)时f(x)=

R上的解析式为

9.求下列函数的单调区间:

高一数学必修一第一章集合与函数知识点总结精华版

和函数值的字母无关);②定义域一致(两点必须同时具备)(见课本21页相关例2)2.值域:先考虑其定义域(1)观察法(2)配方法(3)代换法3.函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.
推荐度:
点击下载文档文档为doc格式
543q582l2r553973044s2xc786b4a900yv7
领取福利

微信扫码领取福利

微信扫码分享