2024届高三理科数学精准培优专练十:等差等比数列
1.等差数列的性质
例1:已知数列?an?,?bn?为等差数列,若a1?b1?7,a3?b3?21,则a5?b5?_______ 2.等比数列的性质
例2:已知数列?an?为等比数列,若a4?a6?10,则a7?a1?2a3??a3a9的值为( ) A.10 B.20 C.100 D.200 3.等差、等比综合
例3:设?an?是等差数列,?bn?为等比数列,其公比q?1,且bi?0?i?1,2,3,L,n?,若a1?b1,a11?b11,则有( )
A.a6?b6 B.a6?b6 C.a6?b6 D.a6?b6或a6?b6
对点增分集训
1.我国古代名著《九章算术》中有这样一段话:“今有金锤,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,中间三尺重几何.”意思是:“现有一根金锤,长5尺,头部1尺,重4斤,尾部1尺,重2斤,且从头到尾,每一尺的重量构成等差数列,问中间三尺共重多少斤.”( ) A.6斤 B.7斤 C.8斤 D.9斤
2.设Sn为等差数列{an}的前n项和,若S5?40,S9?126,则S7?( ) A.66 B.68 C.77 D.84
3.已知等比数列?an?的前n项和为Sn,且满足2Sn?2n?1??,则?的值为( ) A.4 B.2 C.?2 D.?4
4.已知等差数列?an?的前n项和为Sn,a5?a7?14,则S11?( ) A.140 B.70 C.154 D.77
5.已知数列?an?是公比为q的等比数列,且a1,a3,a2成等差数列,则公比q的值为( )
111A.? B.?2 C.1或? D.?1或
22216.公比不为1的等比数列?an?的前n项和为Sn,且?2a1,?a2,a3成等差数列,若a1?1,则S4?( )
22024届高三理科数学精准培优专练十:等差等比数列
2024届高三理科数学精准培优专练十:等差等比数列
A.?5 B.0 C.5 D.7
7.等比数列?an?的各项均为正数,且a5a6?a4a7?18,则log3a1?log3a2?L?log3a 10?( )A.12 B.10 C.8 D.2?log35
8.设公差为?2的等差数列?an?,如果a1?a4?a7?L?a97?50,那么a3?a6?a9?L?a99等于( )
A.?182 B.?78 C.?148 D.?82
9.已知等差数列?an?的前n项和为Sn,且3S1?2S3?15,则数列?an?的第三项为( ) A.3 B.?4 C.?5 D.6
10.等差数列?an?的前n项和为Sn,若2a8?6?a10,则S11?( ) A.27 B.36 C.45 D.66
11.设?an?是各项为正数的等比数列,且K5?K6,Kn是其前n项的积,K6?K7?K8,q是其公比,则下列结论错误的是( ) ..
A.0?q?1 B.a7?1 C.K9?K5 D.K6与K7均为Kn的最大值
12.定义函数f?x?如下表,数列?an?满足an?1?f?an?,n?N?,若a1?2,则a1?a2?a3?L(?a201? ) 8
A.7042 B.7058 C.7063 D.7262
13.已知等差数列?an?,若a2?a3?a7?6,则a1?a7?________
14.已知等比数列?an?的前n项和为Sn,若公比q?32,且a1?a2?则S12的值是______. a3?1,15.设Sn是等差数列?an?的前n项和,若
a510S?,则9?_______. a39S516.在等差数列?an?中,a1?a4?a10?a16?a19?100,则a16?a19?a13的值是_______.
2024届高三理科数学精准培优专练十:等差等比数列
2024届高三理科数学精准培优专练十:等差等比数列
17.已知数列?an?中,a1?2,an?1?2an. (1)求an;
(2)若bn?n?an,求数列?bn?的前5项的和S5.
18.设?an?是等差数列,其前n项和为Snn?N*;?bn?是等比数列,公比大于0,其前n项和为Tnn?N*.
已知b1?1,b3?b2?2,b4?a3?a5,b5?a4?2a6. (1)求Sn和Tn;
(2)若Sn??T1?T2?L?Tn??an?4bn,求正整数n的值.
2024届高三理科数学精准培优专练十:等差等比数列
????