直角三角形全等的判定:“斜边、直角边”.
内容解析
本课是在学习了全等三角形的四个判定方法(“边边边”、“边角边”、“角边角”、“角角边”)的基础上,进一步探索两个直角三角形全等的判定方法.直角三角形是三角形中的一类,判定两个直角三角形全等,可以用已学过的所有全等三角形的判定方法,但两个直角三角形中已有一对直角是相等的,因此在判定两个直角三角形全等时,只需另外找到两个条件即可,由于直角三角形的这种特殊性,判定两个直角三角形全等的方法又有别于其它的三角形.
教科书首先给出一个“思考”,让学生认识到判定两个直角三角形全等与判定两个普通三角形全等的不同之处.然后通过探究5的作图实验操作,让学生经历探究满足斜边和一条直角边分别相等的两个直角三角形是否全等的过程,然后在学生总结探究出的规律的基础上,直接以定理的方式给出“斜边、直角边”判定方法.最后,教科书给出一个例题,让学生在具体问题中运用“斜边、直角边”证明两个直三角形全等,并得到对应边相等.
基于以上分析,本节课的重点是:“斜边、直角边”判定方法的运用. 目标及目标解析 (一)目标
1.理解“斜边、直角边”能判定两个直角三角形全等.
2.能运用“斜边、直角边”证明两个直角三角形全等,并得到对应边、对应角相等.
(二)目标解析
1.学生经历探索两个直角三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.
2.学生能从具体的问题中找出符合“斜边、直角边”条件的两个直角三角形,并能证明这两个直角三角形全等.
教学过程设计 (一)引言
前面我们学习了全等三角形的四个判定方法(“边边边”“边角边”“角边角”“角角边”),本节课我们继续研究两个直角三角形全等的判定方法.
问题1:对于两个直角三角形,除了直角相等的条件外,还要满足哪几个条件,这两个直角三角形就全等了?
方法1 方法2 方法3 两个直角三角形满足的条件 两条直角边分别相等 一个锐角和一条直角边分别相等 一个锐角和斜边分别相等 全等依据 “SAS” “ASA”或“AAS” “AAS” 追问:如果满足斜边和一条直角边分别相等,这两个直角三角形全等吗? 师生活动:师生共同得出上面的三个判定方法,学生思考猜想:满足斜边和一条直角边分别相等的两个直角三角形是否全等.
【设计意图】直接进入本节课学习的内容,培养学生分类讨论的思想.让学生大胆提出猜想.
(二)探索新知
问题2:探究5
任意画出一个Rt△ABC,使∠C=90°,再画一个Rt△A′B′C′,使∠
C′=90°,B′C′=BC,A′B′=AB,把画好的△A′B′C′剪下来,放到△ABC上,它们全等吗?
画法:
(1)画∠MC′N=90°;
(2)在射线C′M上截取B′C′=BC;
(3)以点B′为圆心,AB为半径画弧,交C′N于点A′; (4)连接A′B′.
追问:作图的结果反映了什么规律? 你能用文字语言和符号语言概括吗?
文字语言: 斜边和一条直角边分别相等的两个直角三角形全等.(简写成“斜边、直角边”或“HL”)
符号语言:
在Rt△ABC与Rt△A′B′C′中,
∴Rt△ABC≌Rt△A′B′C′(HL).
师生活动:师生共同进行尺规作图,学生进行操作,观察是否全等.然后教师引导学生得出“斜边、直角边”判定方法,掌握文字和符号语言.
【设计意图】通过作图、剪图、比较图的过程让学生获得“斜边、直角边”的判定方法, 培养学生发现问题的能力,锻炼学生用数学语言的能力.
(三)应用新知,解决问题
问题3:例5:如图,AC⊥BC,BD⊥AD,垂足分别为C,D,AC=BD. 求证:
BC=AD