2021届一轮复习数学新高考新题型专练:
(5)数列
1.已知等比数列{an}的公比为q,前4项的和为a1?14,且a2,a3?1,a4成等差数列,则q的值可能为() A.1 2B.1 C.2 D.3
2.等差数列?an?是递增数列,满足a7?3a5,前n项和为Sn,下列选择项正确的是() A.d?0 B.a1?0
C.当n?5时Sn最小
D.Sn?0时n的最小值为8
3.已知数列?an?的前n项和为Sn,若an是Sn与?(??0)的等差中项,则下列结论中正确的是()
A.当且仅当??2时,数列?an?是等比数列 B.数列?an?一定是单调递增数列 ?1?C.数列??是单调数列
?an?
D.anan?2?0
4.已知数列{an}是各项均为正数的等比数列,{bn}是公差不为0的等差数列,且a2?b2,a8?b8,则()
A.a5?b5 B.a5?b5 C.a4?b4 D.a6?b6
5.已知数列?an?的前n项和为Sn?Sn?0?,且满足an?4Sn?1Sn?0(n?2),a1?1,则下列说
4法正确的是()
A.数列?an?的前n项和为Sn?1
4n
B.数列?an?的通项公式为an?C.数列?an?为递增数列 D.数列{1}为递增数列 Sn1
4n(n?1)
6.在数列{an}中,a1?1,a2?2,a3?3,an?3?(?1)nan?1?1(n?N*),数列{an}的前n项和为Sn,则下列结论正确的是() A.数列{an}为等差数列 C.a17?3
B.a18?10 D.S31?146
2?b,n?N*,则下列说法不正确的是() 7.设a,b?R,数列{an}满足a1?a,an?1?anA.当b?B.当b?1时,a10?10 21,a10?10 4C.当b??2,a10?10 D.当b??4时,a10?10
8.已知数列{an}满足2an?an?1?an?1(n?N*,n?2),则() A.a5?4a2?3a1 B.a2?a7?a3?a6
C.3(a7?a6)?a6?a3 D.a2?a3?a6?a7
9.数列{Fn}:1,1,2,3,5,8,13,21,34…称为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殆为例子而引人的,故又称为“兔子数列”,该数列从第三项开始,每项等于其前相邻两项之和.记数列{Fn}的前n项和为Sn则下列结论正确的是() A.S5?F7?1 B.S5?S6?1 C.S2019?F2021?1
D.S2019?F2020?1
10.已知数列{an}的前n项和为Sn,且有
(a1?a2?{?an)an?(a1?a2??an?1)an?1(n?2,n?N*),a1?a2?1,数列
1}的前n项和为Tn,则以下结论正确的是()
log2Sn?1?log2Sn?2A.an?1 B.Sn?2n?1 C.Tn?n?1 n?3
D.{Tn}为增数列
答案以及解析
1.答案:AC
解析:因为a2,a3?1,a4成等差数列,所以a2?a1?2?a3?1?,因此,
a1?a2?a3?a4?a1?3a3?2?a1?14,故a3?4.又{an}是公比为q的等比数列,所以由
?1?1aa2?a1?2?a3?1?,得a3?q???2?a3?1?,解得q?2或.
q?2?2.答案:ABD
解析:由a7?3a5可得,a1?6d?3?a1?4d?,即a1??3d由于等差数列?an?是递增数列,可知d?0,则a1?0,故A,B正确;
n(n?1)dd?d7dd?7?49d?d?n2??a1???n2?n??n???因为Sn?na1?可知,当n?3或22222228????2n?4时,Sn最小,故C错误;
令Sn?d27dn?n?0,得n?0或n?7,即Sn?0时,n的最小值为8,故D正确 223.答案:CD
解析:因为an是Sn与?的等差中项,所以2an?Sn??,所以a1??,a2?2?.又
2an?1?Sn?1??(n2),所以an?2an?1,所以数列?an?是以?为首项,2为公比的等比数列,
an???2n?1,故选项A错误.当??0时,数列?an?是单调递减数列,故选项B错误.因为an??2n?1,所以
?1??1?11当??0时,数列??是单调递减数列;当??0时,数列???n?1,
an?2?an??an?是单调递增数列,故选项C正确.由于anan?2??2n?1?2n?1??222n?0,故选项D正确.所以正确选项为CD. 4.答案:BC
解析:设{an}的公比为q(q?0),{bn}的公差为d(d?0),an?a1qn?1?a1n?q,q????bn?b1?(n?1)d?b1?d?nd,将其分别理解成关于n类(指数函数指数函数的图象为下凹曲
线)和一次函数(一次函数的图象为直线),则俩函数图象在n?2,n?8处相交,故an?bn(3?n?7),从而a4?b4,a5?b5,a6?b6
5.答案:AD
a1?14,
解析:数列?an?的前n项和为Sn?Sn?0?,且满足an?4Sn?1Sn?0?n2?,11∴Sn?Sn?1?4Sn?1Sn?0,化为:??4.
SnSn?1?1?∴数列??是等差数列,公差为4,
?Sn?∴
1?4?4?n?1??4nSn,可得Sn?1. 4n∴n2时,
an?4Sn?1Sn?4?111??4?n?1?4n4n?n?1?.
可知:B,C不正确,AD正确. 6.答案:BD
解析:依题意得,当n是奇数时,an?3?an?1?1即数列{an}中的偶函数构成以a2?2为首项,1为公差的等差数列,所以a18?2?(9?1)?1?10,当n是偶数时,an?3?an?1?1,所以an?5?an?3?1,两式相减,得an?5?an?1,即数列{an}中的奇数项从a3开始,每隔一项的两
项相等,即数列{an}的奇数呈周期变化,所以a17?a4?3?5?a5,在an?3?an?1?1中,令n?2,得a5?a3?1,因为a3?3,所以a17??2,对于数列{an}的前31项,奇数项满足a3?a5?1,a7?a9?1,a27?a29?1,a31?a4?7?3?a3?3,偶数项构成以a2?2为首项,1为公
差的等差数列,所以S31?1?7?3?15?2?7.答案:BCD 解析:当b?15?(15?1)?146,故选BD 2111122时,因为an+1=an+,所以a2?,又an+1=an+?2an,故22221112a9?a2?(2)7??(2)7=42,a10?a9?32?10.当b?时,an+1?an?(an?)2,故
242a1?a?11时,a10?,所以a10?10不成立,同理b??2和b??4时,均存在小于10的数x0,22只需a1?a?x0,则a10?x0?10,故a10?10不成立.所以选BCD. 8.答案:AC
解析:由2an?an?1?an?1(n?2),可得an?an?1?an?1?an,所以a2?a1?a3?a2?...?an?1?an,所以a5?a4?a4?a3?a3?a2?3(a2?a1),化简得a5?4a2?3a1,故选项A正确;由a7?a6?a3?a2可得a7?a2?a6?a3,故选项B错误;由
3(a7?a6)?a6?a5?a5?a4?a4?a3?a6?a3,故可知选项C正确,若an?n,满足
2an?an?1?an?1(n?2),但a2?a3?5?a6?a7?13,所以选项D错误,故选AC.
9.答案:AC
解析:根据题意有Fn?Fn?1?Fn?2(n?3),所以
S3?F1?F2?F3?1?F1?F2?F3?1?F3?F2?F3?1?F4?F3?1?F5?1, S4?F4?S3?F4?F5?1?F6?1,S5?F5?S4?F5?F6?1?F7?1…
所以S2019?F2019?1. 10.答案:BD
解析:解析:由(a1?a2??an)an?(a1?a2??an?1)?an?1得Sn(Sn?Sn?1)?Sn?1(Sn?1?Sn)
2?SnSn?1,化简得Sn根据等比数列的性质得数列{Sn}是等比数列,易知S1?1,S2?2,故{Sn}
的公比为2,则Sn?2n?1,Sn?1?2n,Sn?2?2n?1由裂项消法得Tn?1?1111 ???log2Sn?1?log2Sn?2n(n?1)nn?11n,故B正确,C错误,D正确 ?n?1n?1根据Sn?2n?1知A选项错误,故答案为BD.