层级快练(三十七)
1.数列{1+2A.1+2 C.n+2-1 答案 C
2.数列{(-1)(2n-1)}的前2 018项和S2 018等于() A.-2 016 C.-2 015 答案 B
解析 S2 018=-1+3-5+7+…-(2×2 017-1)+(2×2 018-1)=2+2+…+2,1 009个2相加=2 018.故选B.
3.在数列{an}中,已知对任意n∈N,a1+a2+a3+…+an=3-1,则a1+a2+a3+…+an等于( ) A.(3-1) C.9-1 答案 B
解析 因为a1+a2+…+an=3-1,所以a1+a2+…+an-1=3=2·3
n-1
n
n-1
nn
2
*
n
2
2
2
2
n
nn
n-1
}的前n项和为( )
B.2+2 D.n+2+2
nn
B.2 018 D.2 015
1n
B.(9-1) 21n
D.(3-1) 4
-1(n≥2).则n≥2时,an
.
n-1
当n=1时,a1=3-1=2,适合上式,所以an=2·3
2
(n∈N).
*
则数列{an}是首项为4,公比为9的等比数列,故选B.
4.数列{an},{bn}满足anbn=1,an=n+3n+2,则{bn}的前10项之和为( ) 1A. 31C. 2答案 B
1111
解析 bn===-,
an(n+1)(n+2)n+1n+2S10=b1+b2+b3+…+b10
11111111115=-+-+-+…+-=-=. 233445111221212
B.D.5
127 12
2
111n
5.在数列{an}中,an=2+1,则++…+=( )
a2-a1a3-a2an+1-an1
A.1+n
21
C.1-n
2答案 C
2-1321
6.已知数列{an}的通项公式是an=n,其前n项和Sn=,则项数n等于( )
264A.13 C.9 答案 D
2-111111
解析 ∵an=n=1-n,∴Sn=n-(+2+…+n)=n-1+n. 222222321111
而=5+,∴n-1+n=5+.∴n=6. 64642647.已知等差数列{an}的公差为d,且an≠0,d≠0,则A.C.
nd
a1(a1+nd)d
a1(a1+nd)
B.D.
111++…+可化简为( ) a1a2a2a3anan+1
n
n
B.1-2 D.1+2
n
n
B.10 D.6
n
a1(a1+nd)n+1
a1[a1+(n+1)d]
答案 B
11111111111
解析 ∵=(-),∴原式=(-+-+…+-) anan+1danan+1da1a2a2a3anan+1111n
=(-)=,选B. da1an+1a1·an+1
25an
8.(2017·衡水中学调研卷)已知等差数列{an}的前n项和Sn满足S3=6,S5=,则数列{n}
22的前n项和为( ) n+2
A.1-n+1 2n+4C.2-n 2答案 B
解析 设等差数列{an}的公差为d,则Sn=na1+
n(n-1)25
d,因为S3=6,S5=,所以22n+4B.2-n+1
2n+2D.2-n+1
2
??1ann+2an
解得所以an=n+1,n=n+1,设数列{n}的前n项和为Tn,则?25?222215a1+10d=,?2d=,???
?3a1+3d=6,
2
345n+1n+21345n+1n+213
Tn=2+3+4+…+n+n+1,Tn=3+4+5+…+n+1+n+2,两项相减得Tn=+
2222222222224111n+2311n+2n+4(3+4+…+n+1)-n+2=+(1-n-1)-n+2,所以Tn=2-n+1. 2222442221119.Sn=2+2+…+=________. 2
2-14-1(2n)-1答案
n
2n+1
111111111
==(-),∴Sn=(1-+-2
(2n)-1(2n-1)(2n+1)22n-12n+12335
?
3
a1=,2
解析 通项an=+…+
1111n-)=(1-)=. 2n-12n+122n+12n+1
2
10.已知数列{an}的前n项和Sn=n-6n,则{|an|}的前n项和Tn=________.
??6n-n (1≤n≤3),答案 ?2
?n-6n+18 (n>3)?
2
解析 由Sn=n-6n,得{an}是等差数列,且首项为-5,公差为2. ∴an=-5+(n-1)×2=2n-7. ∴n≤3时,an<0;n>3时,an>0.
??6n-n (1≤n≤3),∴Tn=?2
?n-6n+18 (n>3).?
2
2
11.(2017·衡水中学调研)已知数列{an}满足a1=1,an+1·an=2(n∈N),则S2 016=________. 答案 3×2
1 008
n*
-3
n
n+1
解析 依题意,得an+1·an=2,an+1·an+2=2
an+1·an+2an+2
,则=2,即=2,
an·an+1an
所以数列a1,a3,a5,…,a2k-1,…是以a1=1为首项,2为公比的等比数列;数列a2,a4,a6,…,a2k,…是以a2=2为首项,2为公比的等比数列,则
1-22(1-2)1 008
S2 016=(a1+a3+a5+…+a2 015)+(a2+a4+a6+…+a2 016)=+=3×2
1-21-2-3.
12.(2018·深圳调研二)数列{an}是公差为d(d≠0)的等差数列,Sn为其前n项和,a1,a2,a5成等比数列.
(1)证明:S1,S3,S9成等比数列;
(2)设a1=1,bn=a2n,求数列{bn}的前n项和Tn.
1 008
1 008
答案 (1)略 (2)2
n+2
-n-4
2
解析 (1)证明:由题意有a2=a1·a5, 即(a1+d)=a1·(a1+4d),解得d=2a1. 又∵S1=a1,S3=3a1+3d=9a1, S9=9a1+36d=81a1,
∴S3=S1·S9.又∵S1,S3,S9均不为零, ∴S1,S3,S9成等比数列.
(2)由a1=1得d=2a1=2,则an=2n-1,则 Tn=a2+a22+a23+…+a2n
=(2×2-1)+(2×2-1)+(2×2-1)+…+(2×2-1) =2×(2+2+2+…+2)-n =2
n+2
2
3
n2
3
n
2
2
-n-4
13.(2017·课标全国Ⅲ,文)设数列{an}满足a1+3a2+…+(2n-1)an=2n. (1)求数列{an}的通项公式; an
(2)求数列{}的前n项和.
2n+122n
答案 (1)an= (2) 2n-12n+1
解析 (1)因为a1+3a2+…+(2n-1)an=2n,故当n≥2时, a1+3a2+…+(2n-3)an-1=2(n-1).
2
两式相减得(2n-1)an=2,所以an=(n≥2).
2n-1又由题设可得a1=2, 从而{an}的通项公式为an=(2)记{
2
. 2n-1
anan211
}的前n项和为Sn.由(1)知==-. 2n+12n+1(2n+1)(2n-1)2n-12n+1
1111112n则Sn=-+-+…+-=.
13352n-12n+12n+1
14.已知数列{an}为等比数列,Tn=na1+(n-1)a2+…+an,且T1=1,T2=4. (1)求数列{an}的通项公式; (2)求数列{Tn}的通项公式. 答案 (1)an=2
n-1
(2)Tn=2
n+1
-n-2
解析 (1)T1=a1=1,
T2=2a1+a2=2+a2=4,∴a2=2.
a2
∴等比数列{an}的公比q==2.
a1∴an=2
n-1
.
2
n-1
(2)方法一:Tn=n+(n-1)·2+(n-2)·2+…+1·22Tn=n·2+(n-1)2+(n-2)2+…+1·2,② ②-①,得
Tn=-n+2+2+…+2=-n+2
n+1
2
n-12
3
n
,①
2(1-2)
+2=-n+
1-2
n
n
-2=2
n+1
-n-2.
方法二:设Sn=a1+a2+…+an, ∴Sn=1+2+…+2
n-1
=2-1.
n
∴Tn=na1+(n-1)a2+…+2an-1+an =a1+(a1+a2)+…+(a1+a2+…+an)
=S1+S2+…+Sn=(2-1)+(2-1)+…+(2-1) 2(1-2)
=(2+2+…+2)-n=-n
1-2
2
n
n2
n
=2
n+1
-n-2.
n+1
15.(2018·太原二模)已知数列{an}的前n项和Sn=2
1
-2,数列{bn}满足bn=an+an+
(n∈N).
*
(1)求数列{bn}的通项公式;
(2)若cn=log2an(n∈N),求数列{bn·cn}的前n项和Tn. 答案 (1)3×2 (2)3(n-1)×2
n
n+1
*
+6
解析 (1)当n=1时,a1=S1=2, 当n≥2时,an=Sn-Sn-1=2, 又a1=2满足上式, ∴an=2(n∈N), ∴bn=an+an+1=3×2. (2)由(1)得an=2,bn=3×2, ∴cn=log2an=n,∴bn·cn=3n×2,
∴Tn=3×(1×2+2×2+3×2+…+n×2),① ①×2得2Tn=3×(1×2+2×2+3×2+…+n×2①-②得-Tn=3×(2+2+…+2-n×2∴Tn=3(n-1)×2
n+1
2
n
n+1
2
3
4
n+1
2
3
n
n
n
n
n
n
*
n
),②
n+1
)=3×[(1-n)×2-2],
+6.