专升本必做120道基础习题1.求y?
3x2?1?x?3x?x2?1的反函数2.设f(x)在x?0处连续,且对?x,有f(2x)?f(x)cosx,求在x?0时f(x)的表达式。3.求极限lim
1
?1?2?3?4?????(?1)n?1nn??n
n2n4.设f(x)?limn2?(2x)?x
n??(x?0),讨论f(x)的可导性5.设数列?xn?满足x1?
1?xn1
,xn?1?,求limx1x2x3???xnn??22n?1
6.设a1?1,ak?k(ak?1?1),试计算lim??1??an??k?1?k7.?
???
(1)设f(x)为在[a,b]上的连续正值函数。求证:limnn???
ba[f(x)]ndx?maxf(x)
a?x?b2???n(2)设数列?xn?满足xn??0,?且sinxn?
??2?
?
?20sinnxdx,计算limxnn??8.计算lim
1?3?5?????(2n?1)n??2?4?6?????(2n)9.计算lim
1?
n??11?????2nln(n?1)10.计算lim[x?x?sinx?(x?2)]
x???211.计算lim
1?cosxcos2xcos3xx?0x2nex12.计算lim
x???12(1?)xx13.计算lim
n??n!n
?3ln(x?ex)?23214.计算lim?1?x?x?x?1?x?x??x???x??
115.设y?y(x)是二阶常系数微分方程y???py??qy?e满足初始条件y(0)?y?(0)?0的3xln(1?x2)
特解,求lim
x?0y(x)sin(ex?1)?(esinx?1)
16.计算lim
x?0x4?2017.计算?n??20?lim
sin2n?1xdxsin2nxdx
1
,且f(1)?1,2x?2x?f(x)?
18.设函数f(x)在[1,??)上具有连续导数,满足0?f?(x)?求证:limf(x)存在且limf(x)?
x???x???3219.1?sin2x
(1)设f(x)?arcsin(x?x),求f?(0)
1?x22(2)设函数f(x),g(x)在(??,??)上有定义,且对于?x,y?(??,??),恒有f(x?y)?f(x)g(y)?f(y)g(x),且f(0)?0,g(0)?1,f?(0)?1,g?(0)?0,求f?(x)
20.设数列?an?满足a1?2,an?1?2an?1,计算lim
2ann??2naa?????a12n?121.设f(x)?x?2limf(x),计算limf(x)
x?1x?322.设函数f(x)在(x0?1,x0?1)内无穷次可导,证明,对任意的正整数n,都有如下式子成立。dn?f(x)?f(x0)?f(n?1)(x0)
lim???x?x0dxnx?x0n?1??
223.设f(x)在[0,1]上有连续导数,且有f(0)?f(1)?0。求证:112?[f(x)]dx?0?0411122(2)?f(x)dx??[f?(x)]dx
080(1)1f2(x)dx?
24.计算dx?(x4?1)225.(1)计算?
?20ln(sinx)dx
(2)利用(1)计算?
?20xdxtanx26.(1)计算limsin(?n?n)
n??22(2)计算limsin(?n?1)
n??227.记C(?)为(1?x)在x?0处的幂级数的展开式中x
?12018的系数,计算积分?1?11??C(?y?1)??...??0?y?1y?2?dyy?2018??
28.设函数f(x,y)在单位圆域上有连续偏导数,且在边界上的值恒为0,求证:1f(0,0)??lim???02?其中D是圆域??x?y?1.222??
Dxfx??yfy?x2?y2dxdy
29.设函数f(x)在[0,??)具有二阶连续导数,已知f(0)?f?(0)?0,对?x?[0,??),都有f??(x)?3f?(x)?2f(x)?0成立,求证:f(x)?0
330.设f(x)在[0,1]上连续,记I(f)?得I(f)?J(f)最大?
10xf(x)dx,J(f)??xf2(x)dx,求函数f(x)使0211?x?x?
31.求不定积分??1?x??edx
x??
n132.计算lim
n???
i?1ntan
in2n?i
33.(1)设函数f(x)?x,x?[??,?)。将函数f(x)展开为傅里叶级数1?2(2)利用(1)的结论证明?2?
6k?1k??(3)求积分?
??0u
du的值1?eu34.设函数f(x,y)是定义在0?x?1,0?y?1上的二元函数,f(0,0)?0,且在点(0,0)处?f(x,y)可微,求极限lim
x?0x20dt?
txf(t,u)du
?x441?e
35.求?n
n?1100?12的整数部分??123n?
??xnxnxnxn???,x?0????????limn???123n?1??n?n??n??36.设f(x)??,求f(x)的表达式nnn??
?
1????limln?arctannx?0??,?n??n?2??
37.设函数f(x,y)具有一阶连续偏导数,满足df(x,y)?yedx?x(1?y)edy,及yy4f(0,0)?0,求f(x,y)
?2z?2z?z
38.已知函数z?z(x,y)具有二阶连续偏导数,且满足方程2???z。求证:经?x?x?y?x变换u?
11
(x?y),v?(x?y),w?zey,以u、v作自变量,w作因变量,方程可化22?2w?2w
为??2w?u2?u?vdx
y(x2?y2?a2)39.设y?y(x)满足(x?y)?2a(x?y)(a?0),求I?
222222?
tan(x2)?dxdy40.若D:x?y?,求??221?tan(x)tan(y)4D2241.设f(x)?
arcsinx1?x
2,求f
(2017)(0)
42.求满足1du(t)
?u(t)??u(t)dt及u(0)?1的可微函数u(t)
0dt
43.设f(x)在(?1,1)内具有二阶连续导数且f??(x)?0,对于(?1,1)内任意的x?0,存在唯一的?(x)?(0,1),使得f(x)?f(0)?f?(?(x)x)x成立,计算lim?(x)
x?01
an?q(有限或??)44.设0?an?1,n?1,2,...,且lim,求证:n??lnnln
(1)当q?1时级数?a
n?1?n收敛,当q?1时级数n2?a
n?1?n发散;(2)判断级数1????
n?2??
2lnn?
的敛散性2?n?
45.设a、b均为常数,a??2,a?0,求实数a、b,使得5