第十一章 微分方程
习题1.说出下列各微分方程的阶数:
d2QdQQdy?dy???0; (1)???x?y?0; (2)L2?RdtdtCdx?dx?211-1
(3)xy????2y???x2y?0 ; (4)(x?y)dy?(7x?6y)dx?0;
d????sin2?. d?解:(1)一阶;(2)二阶;(3)三阶;(4)一阶;(5)二阶;(6)一阶.
2.指出下列各函数是否为所给微分方程的解: (5)y???2y??y?sinx ; (6)(1)xy??2y , y?5x2;
(2)y???y?0 , y?3sinx?4cosx;
1(3)y???x2?y2 , y?;
xd2y1(4)2?y?ex , y?C1sinx?C2cosx?ex.
dx2解:(1)∵ y??10x ,代入方程得 x?10x?2?5x2
∴y?5x2是方程的解.
(2)∵ y??3cosx?4sinx,y????3sinx?4cosx,代入方程,得
y???y???3sinx?4cosx???3sinx?4cosx??0 ∴ y?3sinx?4cosx是方程的解.
(3)∵ y???∴y?12212??,y??x?,代入方程,得 2332xxxx1是方程的解. xdy1xd2y1?C1cosx?C2sinx?e,2??C1sinx?C2cosx?ex,(4)∵ 代入方程, dx2dx21??1??得 ??C1sinx?C2cosx?ex???C1sinx?C2cosx?ex??ex
2??2??
1
1∴y?C1sinx?C2cosx?ex是方程的解.
23.在下列各题中,验证所给二元方程所确定的函数为所给微分方程的解: (1)?x?2y?y??2x?y , x2?xy?y2?C; (2)?xy?x?y???xy?2?yy??2y??0 , y?ln(xy).
解:(1)在二元方程 x2?xy?y2?C的两边同时对x求导,得
2x?y?xy??2yy??0
移项后即得 ?x?2y?y??2x?y
故二元方程x2?xy?y2?C所确定的函数是所给微分方程的解.
(2)在 y?ln(xy)两边对x求导,得 y??y??xy?x??y?y?xy??1?11y?y(y?xy?)??, 即 y?? xyxyxy?x y????xy?x?2??xy??y2?y?xy?x?y22??xy3?2xy2?2xy?xy?x?3,
代入微分方程,得
(xy?x)??xy3?2xy2?2xy?xy?x?3?x??xy?x?2?y?yy?2??0 xy?xxy?x故 y?ln(xy)所确定的函数是所给微分方程的解.
4.在下列各题中,确定函数关系式中所含的参数,使函数满足所给的初始条件: (1)x2?xy?y2?C2 , y|x?0?1;
(2)y??C1?C2x?ex , y|x?0?0 , y?|x?0?1; (3)x?C1cos?t?C2sin?t , x|t?0?1 , x?|t?0??. 解:(1)∵ y|x?0?1
∴C2 =02?0?12?1
即 x2?xy?y2?1
?C?0(2)y???C1?C2x?C2?ex ,由 y|x?0?0 , y?|x?0?1,得 ?1
?C1?C2?1
2