数列综合问题之数列与函数
思想方法:关键是应用函数的解析式和性质得到数列的通项或递推关系。
一、利用具体函数的解析式得递推关系 x2?a1(b,c?N)中,f(0)?0,f(2)?2,f(?2)??, 例1:已知函数f(x)?bx?c2(1) 求函数f(x)的解析式;(2)各项均不为零的数列{an}满足:4Snf(n条件(2)下,令bn?an2,求数列?bn?的前n项和?
1)?1,求通项an?(3)在an分析:由题知:
a?0,b?c?2,所以
x2f(x)?2x?2,所以可求得:
22Sn?an?an?(an?an?1)(an?1?an?1)?0?an??n
例3:函数f(x)?x?22x?2,x??2,???;(1)求f(x)的反函数f?1?1(x);(2)数列?an?满足:
22an?1?anSn?f(Sn?1),且a1?2,求数列?an?的通项公式;(3)在条件(2)下,令bn?(n?N*),求
2an?1an数列?bn?的前n项和?
?12分析:(1)由题知:f(x)?(x?2),x?0;(2)sn?sn?1?2?an?4n?2
222an?a(a?a)?2an?1an11n(3)bn??1?n?1n?1?(?)
2an?1an2an?1an2n?12n?1例4、设函数
f?x??1 , x4?2(1) 证明:对一切x?R,f(x)+f(1-x)是常数;
?1??2??n?1???f?1?,?n?N??,求an,并求出数列{an}的(2)记an?f?0??f???f???......?f??n??n??n?前n项和。 解:∵
f?x??111fx?f(1?x)???, ∴ = xx1?x4?24?24?241?x?2?4x?21?x? (4?2)(41?x?2)2 1
?1??2??n?1?an?f?0??f???f???......?f???f?1?,?n?N??
?n??n??n??n?1??n?2??2??1?n?1an?f?1??f??f?......?f?f?f0,n?N????a∴2= ????????nnnnn2????????1?1n?1n(?)n?144=n(n?3) ∴an= ∴Sn=482
二、利用抽象函数的性质得递推关系: 例1:f(x)是R上不恒为零的函数,且对任意a,b?R都有:f(ab)?af(b)?bf(a),
f(2?n),(n?N*),求数(1) 求f(0)与f(1)的值;(2)判断f(x)的奇偶性;(3)若f(2)?2,un?n列?un?的前n项和Sn?
简析:(1)f(0)?0,f(1)?0;(2)f(1)?f((?1))??f(?1)?f(?1)?f(?1)?0,再令
2a??1,b?x,f(?x)??1f(x)?xf(?1)??f(x),所以为奇函数;
(2) 当ab?0时,
f(ab)f(b)f(a)f(x),令函数g(x)?,所以有:??abbaxg(ab)?g(b)?g(a)?g(an)?ng(a)
,
所
以
n?1有:
f(an)g(a)??f(an)?ang(a)n?an?1nf(a)nan,得
?1?f(2?n)????2?1?1?nf()?un???2?2?n?11f(); 2nn1111?1??1?又因为:f(1)?2f()?f(2)?f()??,所以:un????,Sn????1。
2222?2??2?例2、已知函数fn(x)(n?N?)具有下列性质:
1?f(0)?,?n2? ?????k?1kkk?1?????????n?fn???fn?????fn???1?fn??(k?0,1,?,n?1);?nnnn????????????? 2
(1)当n一定,记ak?1,求ak的表达式(k?0,1,?,n); k??fn???n?13 (2)对n?N?,证明?fn(1)?.
解:(1)?n?fn????k?1??k????k???k?1???fn?????fn???1?fn?? nnnn???????????14?k?1??k??k??k?1??(n?1)fn???nfn???fn??fn??,
nnnn????????即
n?1n1??1,又ak?, ?k??k?1??k?fn??fn?fn???nn?????n??(n?1)ak?nak?1?1,
?n(ak?1?1)?(n?1)(ak?1),即
ak?1?11?1?,由n为定值, ak?1n1为公比的等比数列, n则数列{ak?1}是以a0?1为首项,1?1?ak?1?(a0?1)(1?)k,
n1?1??2,?ak?1??1??由于a0?fn(0)?n?k(k?0,1,?,n);
(2)?ak?111,?fn(1)??, nan?k??1?fn??1??1???n??n?欲证
11?fn(1)?, 43n?1?只需证明3?1??1???4,
?n??1?只需证明2??1???3,
?n?n11121n1 ?(1?)n?1?Cn?C2???Cn2nnnnn?1?1???2, 1n1121n1 (1?)?1?Cn?Cn???Cn2nnnnn?1?1?n(n?1)2n2???n(n?1)??2?1n!nn
3
数列与函数结合的综合问题同名5301.doc



