第 11 章(之1)(总第59次)
教材内容:§11.1多元函数 1.解下列各题:
**(1). 函数f(x,y)?ln(x?y?1)连续区域是 ??????? . 答:x?y?1
2222xy??**(2). 函数f(x,y)??x2?y2?0?x2?y2?0x2?y2?0 , 则( )
(A) 处处连续 (B) 处处有极限,但不连续
(C) 仅在(0,0)点连续 (D) 除(0,0)点外处处连续 答:(A)
**2. 画出下列二元函数的定义域: (1)u?x?y;
解:定义域为:(x,y)?y?x,见图示阴影部分:
?
(2)f(x,y)?ln(1?xy);
解:(x,y)xy??1,第二象限双曲线xy??1的上方,第四象限双曲线xy??1的下方(不包括边界,双曲线xy??1用虚线表示).
??(3)z?x?y. x?y解:
x?y?x?y??x?y??x?y??0. ?0????x?y?0x??yx?y?? 46
***3. 求出满足f?x?y,??y?22??x?y的函数f?x,y?. x?s?x??s?x?y?1?t?解:令?, ∴? ystt???y?x?1?t?
x2?1?y?s2?s2t2s2?1?t?∴f?s,t??, 即 f?x,y??. ?21?y1?t?1?t? ***4. 求极限:
?x,y???0,0?lim1?xy?1x?y22.
解:0?1?xy?1x?y22??1?xy?1??xyx?y22???12x?y22
221?xy?1x?y?????
x2?y2?0 (?x,y???0,0?) ?21?xy?1?? ∴
?x,y???0,0?lim1?xy?1x?y22?0.
x2? y2**5. 说明极限lim不存在.
?x,y???0,0?x2?y2解:我们证明?x,y?沿不同的路径趋于?0,0?时,极限不同.
x2?y2?y2?2??1, 首先,x?0时,极限为lim22x?0x?yy?x,y???0,0?x2?y2x2?2?1, 其次,y?0时,极限为lim22y?0x?x,y???0,0?x?yx2? y2故极限lim不存在.
?x,y???0,0?x2?y2
**6. 设f(x,y)?ysin2xxy?1?1,试问极限
(x,y)?(0,0)limf(x,y)是否存在?为什么?
解:不存在,因为不符合极限存在的前提,在(0,0)点的任一去心邻域内函数
f(x,y)?
ysin2xxy?1?1并不总有定义的,x轴与y轴上的点处函数f(x,y)就没有定义.
47
***7. 试讨论函数z?arctanx?y的连续性. 1?xy解:由于arctan不连续.
x?y是初等函数,所以除xy?1以外的点都连续,但在xy?1上的点处1?xy
**8. 试求函数f(x,y)?xy的间断点.
sin2?x?sin2?y解:显然当(x,y)?(m,n)m,n?Z时,f(x,y)没定义,故不连续. 又f(x,y)?xy是初等函数. 22sin?x?sin?y
所以除点(m,n)(其中m,n?Z)以外处处连续.
第 11 章(之2) (总第60次)
教材内容:§11.2 偏导数 [§11.2.1]
**1.解下列各题: (1)函数f(x,y)?x2?y在(0,0)点处 ( )
3(A)fx?(0,0)和fy?(0,0)都存在; (B)fx?(0,0)和fy?(0,0)都不存在; (C)fx?(0,0)存在,但fy?(0,0)不存在; (D)fx?(0,0)不存在,但fy?(0,0)存在. 答:(D).
(2) 设z?x?(y?2)arcsin?zx,那么
?yy? ( )
(!,2)(A) 0 ; 答:(D).
(B) 1; (C)
?; 2 (D)
?. 4(3)设f?x,y??xy,则fx'(0,0)?______,fy'(0,0)?__________.
fx'(0,0)?0,同理 fy'(0,0)?0.
48
解:由于f(x,0)?0,?
**2. 设z?x?2y?lnx2?y2?3exy, 求 zx,zy. 解:zx?1?
**3. 求函数z?arctan解:zx??
xyxy?3yez??2??3xexy. , y2222x?yx?yy对各自变量的偏导数. xyx,z?. yx2?y2x2?y2?x2ln(x2?y2)**4. 设f(x,y)???0x2?y2?0x2?y2?0,求fx(0,0),fy(0,0).
x2lnx20?0?0. ?0, fy(0,0)?lim解:fx(0,0)?limx?0y?0xy
?z?x2?xy?y2***5. 求曲线?在?1,1,1?点处切线与y轴的夹角.
x?1?解:由于曲线在平面x?1内,故由 zy?1,1????x?2y??1,1??1,
得切线与y轴的夹角为 arctan1??4.[也可求出切向量为?0,1,1?]
∴夹角=arccos
?0,1,1??0,1,0??arccos12?12122??. 24***6. 设函数?(x,y)在点(0,0)连续,已知函数f(x,y)?x?y?(x,y)在点(0,0)偏导数
fx?(0,0)存在,
(1)证明?(0,0)?0; (2)证明fy?(0,0)也一定存在.
解:(1)lim?x?0?x?(?x,0)f(?x,0)?f(0,0)?lim, ?x?0?x?x?x??(?x,0)??x??(?x,0)?lim
?x??0?x??0?x?x即 ?(0,0)???(0,0), 故 ?(0,0)?0.
因为fx?(0,0)存在,所以 lim
49
(2)由于?(x,y)在点(0,0)连续,且?(0,0)?0,所以?y?0时,?(0,?y)是无穷小量,
而
?y?y是有界量,所以lim?y?0?y?(0,?y)f(0,?y)?f(0,0)?lim?0,即fy?(0,0)?0. ?x?0?y?y第 11 章(之3) (总第61次)
教材内容:§11.2 偏导数 [§11.2.2 ~ 11.2.4]
**1. 求函数f?x,y,z??xchz?yshx的全微分,并求出其在点P??0,1,ln2?处的梯度向量.
解:df?x,y,z??d?xchz??d?yshx?
?chzdx?xshzdz?shxdy?ychxdx
??chz?ychx?dx?shxdy?xshzdz∴df?x,y,z??0,1,ln2??
1?1?dx, ?f?x,y,z??0,1,ln2???,0,0?. 4?4?**2.求函数z?arctanx?y的全微分: 1?xy解:dz?darctanx?y ?d(arctanx?arctany)1?xydxdy
?1?x21?y2
?d(arctanx)?d(arctany)? sec2(xy)**3. 设z?,求dz.
ln(xy?1)[ln(xy?1)]d[sec2(xy)]?sec2(xy)d[ln(xy?1)]解:dz? 2[ln(xy?1)]
1sec2(xy)2?[ln(xy?1)2sec(xy)tan(xy)(ydx?xdy)?(ydx?xdy)] 2xy?1[ln(xy?1)]?
50
[2ln(xy?1)tan(xy)(xy?1)?1](ydx?xdy).
(xy?1)cos2(xy)ln2(xy?1)