好文档 - 专业文书写作范文服务资料分享网站

半导体制冷的原理(精)

天下 分享 时间: 加入收藏 我要投稿 点赞

低温制冷装置

常用的低温制冷装置有贮液式制冷器、G-M循环制冷器、斯特林循环制冷器、VM制冷器等多种。

① 贮液式制冷器:将贮存低温液体的容器绝热,使需要冷却的电子元件、器件与这种液体直接或间接地接触。电子元件、器件引入的热量(或本身原有的热量)为液体蒸发所吸收,电子元件、器件即被冷却。这种制冷器可分为整体容器式和液体传输式两类。在整体容器式制冷器中,电子元件、器件直接装在低温液体的贮存容器内。液体传输式制冷系统包括低温液体存放容器、液体传输管路、冷头和必要的控制系统,靠重力或气体压力传输液体(图2)。这种制冷器使用时间不长就需要添加低温液体,应用受到限制。

② G-M循环制冷机:由压缩机和膨胀机及其附属装置组成(图3)。压缩机压缩来自膨胀机的低压气体,提供一定压力的纯净工作物质氦气。膨胀机使高压气体在其内部膨胀而致冷。

③ 斯特林循环制冷机:斯特林循环由二个等容、二个等温组成的闭式循环。它有单级、双级二种。它是冷却电子器件的微型制冷机之一。它效率高、体积小、重量轻、操作简单、使用低温温区和冷量范围大。

④ VM制冷机:完全或主要靠热能进行工作,可直接由热量产生冷量。凡能使热腔保持足够高的温度和提供足够热的能源都可利用,如电能、化学燃烧能、放射性同位素(如钚 238)、太阳能等。这种制冷机是回热式制冷机的变种,又叫热泵制冷机(图4)。有时,只使用很少的电能用于克服活塞与汽缸之间的摩擦力。它振动小、不易损坏、寿命长、重量轻和体积小,适于野外和航空使用,尤其适于在航天技术中应用。

⑤ 热电制冷器:又称半导体制冷器。它利用半导体的帕耳帖效应,即两种不同金属或半导体组成闭合回路时,通以直流电,引起材料两接点一个变冷一个变热的现象,组成多级的半导体PN结热电制冷器,通常用于红外和低温电子技术(图5)。它具有体积小、重量轻等优点。但制冷温度不能达到很低的程度。

⑥ 辐射制冷器:主要是利用一部分宇宙空间的高真空(10-18帕)和星际的有效低温太空接受 3~4K的低温源,辐射制冷器(图6)是一种不需要任何热源和

机械制冷功的被动式制冷器,其优点是不需要传动部件和冷却剂,且重量轻、工作寿命长。这类制冷器已用于气象卫星冷却电子元件、器件。

⑦ 节流制冷器:利用等焓膨胀的节流效应制冷。它是降温的常用方法,即高压气体通过一个小孔降压而变冷,这个过程在节流阀中完成。这种制冷器有单级和双级二种。气体经不同节流后达到不同的制冷温度。例如,用液氮预冷、氖节流的双组制冷机可达到30K,可与锗掺汞元件配合,用于红外探测器中。节流制冷器是现代最成熟的制冷装置之一,其优点是结构和工艺简单、易于制造、重量轻、体积小、无运动部件、噪声小和使用方便等,缺点是效率较低、工作压力高,对气体纯度要求高,一般杂质不超过0.01%(节流孔视冷量而定,其大小一般为几微米至十几微米,易发生冻结阻塞)。

⑧ 低温温度计:半导体锗温度计在低温下电阻随温度的降低而迅速增加,因而灵敏度较高、重复性好和使用方便。它已成为低温超导领域的重要测量元件,可用于低温设备、空间装置、超导装置和卫星通信地球站等设备上的低温温度测量,可以配用指示记录和数字仪表进行显示。此外,砷化镓二极管广泛用于1~400K的温度测量。掺锌和掺锰的砷化镓电阻温度计测温的相对灵敏度比砷化镓二级管温度计大约高10倍到 100倍。低温温度计还有铂电阻温度计、碳电阻温度计、铑铁电阻温度计,以及其他低温热电偶和低温传感器等。

⑨ 低温泵:利用温度极低的表面,使被抽气体冷凝而获得超高洁净真空的真空泵。低温泵有贮槽式低温泵、蒸发式低温泵和制冷机低温泵等,抽速均在1~104/米3秒之间。低温泵能大大提高真空度(低于10-11帕)。上百万升/秒的高抽速的超高真空或极高真空设备也已经研制成功。

低温抽气在镀膜设备中获得广泛应用,它在大规模集成、超大规模集成与超导集成工艺中尤其重要,因为高质量的真空镀膜常常要求在没有杂质和原子污染的条件下进行,特别是生产磁膜、超导膜和其他特殊电子元件、器件时需要消除

氧和碳氢化合物之类的污染。另外,材料在真空中释放出大量的氢,也需要对氢有很高的抽速。

为使热成像系统正常工作,将其探测器元件冷却至低温或深低温的技术,又称低温恒温器技术。该技术的主要任务有二点:一是通过制冷形成一个合适的低温恒温环境,以保证需要在低温下工作的电子器件或系统功能正常,或提高器件的灵敏度;二是屏蔽或减小来自热成像系统的滤光片、挡板及光学系统本身等带来的热噪声。

制冷器的工作原理包括物理和化学两种方法。根据使用场合和所需要制冷温度不同,可利用不同原理制成适当的制冷器。热成像系统使用的多为物理方法。主要有:

1、利用相变制冷

即利用制冷工作物质相变吸热效应,如使用灌注式杜瓦瓶的液氮、液氢等的制冷;

2、利用焦耳-汤姆逊效应制冷

即当高压气体的温度低于本身的转换温度并通过一个很小的节流孔时,气体的膨胀会使温度下降。如焦-汤制冷器,特点是结构简单、可*性高、质量轻、体积小、无振动、无运动部件、噪声小、成本低、致冷速度快,致冷时间通常只需15~60s(秒)。

3、利用气体的等熵膨胀制冷

即气体在等熵膨胀时,借膨胀机的活塞向外输出机械功,膨胀后气体的内位能要增加,从而要消耗气体本身的内功能来补偿,致使膨胀后温度显著降低。如斯特林闭循环制冷器,其特点是功耗低、尺寸小、质量轻。 4、利用帕尔帖效应制冷

即用N型半导体和P型半导体作用偶对,当有直流电通过时电偶对一端发热,另一端变冷,如热电制冷器,又称为半导体或温差电制冷器。热电探测器的主要优点是:全固态化器件、结构紧凑、寿命长;无运动部件,不产生噪音;不受环境影响;可*性高。缺点是制冷器的性能系数(COP)较低,致冷量小,效率低;

5、利用物体之间的热辐射交换制冷

如在外层空间利用外层宇宙的高真空,深低温来制冷。它的显著特点是无运

半导体制冷的原理(精)

低温制冷装置常用的低温制冷装置有贮液式制冷器、G-M循环制冷器、斯特林循环制冷器、VM制冷器等多种。①贮液式制冷器:将贮存低温液体的容器绝热,使需要冷却的电子元件、器件与这种液体直接或间接地接触。电子元件、器件引入的热量(或本身原有的热量)为液体蒸发所吸收,电子元件、器件即被冷却。这种制冷器可分为整体容器式和液体传输式
推荐度:
点击下载文档文档为doc格式
4yaa95g6z59da6a52gje3fmdy9ul8q00gi5
领取福利

微信扫码领取福利

微信扫码分享