www.szzx100.com 江南汇教育网
2019中考数学二轮专题《动态问题4》
1.如图,抛物线y=﹣x+bx+c与x轴交于A、B两点(点A在点B的左侧),点A的坐标为(﹣1,0),与y轴交于点C(0,2),直线CD:y=﹣x+2与x轴交于点D.动点M在抛物线上运动,过点M作MP⊥x轴,垂足为P,交直线CD于点N. (1)求抛物线的解析式;
(2)当点P在线段OD上时,△CDM的面积是否存在最大值,若存在,请求出最大值;若不存在,请说明理由;
(3)点E是抛物线对称轴与x轴的交点,点F是x轴上一动点,点M在运动过程中,若以C、E、F、M为顶点的四边形是平行四边形时,请直接写出点F的坐标.
2
2.如图,直线y=﹣x+4与x轴、y轴分别交于点A、B,点C从点B出发,以每秒5个单位长度的速度向点A匀速运动;同时点D从点O出发,以每秒4个单位长度的速度向点B匀速运动,到达终点后运动立即停止.连接CD,取CD的中点E,过点E作EF⊥CD,与折线DO﹣OA﹣AC交于点F,设运动时间为t秒. (1)点C的坐标为 (用含t的代数式表示); (2)求证:点E到x轴的距离为定值;
(3)连接DF、CF,当△CDF是以CD为斜边的等腰直角三角形时,求CD的长.
3.平面直角坐标系xOy中,过原点O及点A(0,4)、C(12,0)作矩形OABC,∠AOC的平分线交AB于点D.点P从点O出发,以每秒2个单位长度的速度沿射线OD方向移动;同时点Q从点O出发,以每秒4个单位长度的速度沿x轴正方向移动.设移动时间为t秒.
1
www.szzx100.com 江南汇教育网
(1)当点P移动到点D时,求出此时t的值. (2)当t为何值时,△PQB为直角三角形. (3)已知过O、P、Q三点的抛物线解析式为y=﹣
+2t(t>0).问是否存
在某一时刻t,将△PQB绕某点旋转180°后,三个对应顶点恰好都落在上述抛物线上?若存在,求出t的值;若不存在,请说明理由.
4.如图,直线L:y=﹣x+2与x轴、y轴分别交于A、B两点,在y轴上有一点N(0,4),动点M从A点以每秒1个单位的速度匀速沿x轴向左移动. (1)点A的坐标: ;点B的坐标: ; (2)求△NOM的面积S与M的移动时间t之间的函数关系式;
(3)在y轴右边,当t为何值时,△NOM≌△AOB,求出此时点M的坐标;
(4)在(3)的条件下,若点G是线段ON上一点,连结MG,△MGN沿MG折叠,点N恰好落在x轴上的点H处,求点G的坐标.
5.已知一次函数y=kx+b的图象与x轴、y轴分别交于点A(﹣2,0)、B(0,4),直线l经过点B,并且与直线AB垂直.点P在直线l上,且△ABP是等腰直角三角形. (1)求直线AB的解析式; (2)求点P的坐标; (3)点Q(a,b)在第二象限,且S△QAB=S△PAB. ①用含a的代数式表示b;
②若QA=QB,求点Q的坐标.
2
www.szzx100.com 江南汇教育网
6.如图,已知长方形OABC的顶点O在坐标原点,A、C分别在x、y轴的正半轴上,顶点B(8,6),直线y=﹣x+b经过点A交BC于D、交y轴于点M,点P是AD的中点,直线OP交AB于点E
(1)求点D的坐标及直线OP的解析式;
(2)求△ODP的面积,并在直线AD上找一点N,使△AEN的面积等于△ODP的面积,请求出点N的坐标
(3)在x轴上有一点T(t,0)(5<t<8),过点T作x轴的垂线,分别交直线OE、AD于点F、G,在线段AE上是否存在一点Q,使得△FGQ为等腰直角三角形,若存在,请求出点Q的坐标及相应的t的值;若不存在,请说明理由
7.如图,在平面直角坐标系中,函数y=2x+8的图象分别交x轴、y轴于A、B两点,过点A的直线交y轴正半轴于点M,且点M为线段OB的中点. (1)求直线AM的函数解析式. (2)试在直线AM上找一点P,使得S△ABP=S△AOB,请直接写出点P的坐标.
(3)若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以A、B、M、H为顶点的四边形是平行四边形?若存在,请直接写出所有点H的坐标;若不存在,请说明理由.
8.如图,在矩形OABC中,OA=2OC,顶点O在坐标原点,顶点A的坐标为(8,6). (1)顶点C的坐标为( , ),顶点B的坐标为( , ); (2)现有动点P、Q分别从C、A同时出发,点P沿线段CB向终点B运动,速度为每秒2个单位,点Q沿折线A→O→C向终点C运动,速度为每秒k个单位.当运动时间为2秒时,以点P、Q、C顶点的三角形是等腰三角形,求k的值; (3)若矩形OABC以每秒个单位的速度沿射线AO下滑,直至顶点A到达坐标原点时停止下滑.设矩形OABC在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围.
3
www.szzx100.com 江南汇教育网
9.问题发现.
(1)如图①,Rt△ABC中,∠C=90°,AC=3,BC=4,点D是AB边上任意一点,则CD的最小值为 . (2)如图②,矩形ABCD中,AB=3,BC=4,点M、点N分别在BD、BC上,求CM+MN的最小值.
(3)如图③,矩形ABCD中,AB=3,BC=4,点E是AB边上一点,且AE=2,点F是BC边上的任意一点,把△BEF沿EF翻折,点B的对应点为G,连接AG、CG,四边形AGCD的面积是否存在最小值,若存在,求这个最小值及此时BF的长度.若不存在,请说明理由.
10.有两张完全重合的矩形纸片,将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD,MF,若BD=16cm,∠ADB=30°.
(1)试探究线段BD 与线段MF的数量关系和位置关系,并说明理由;
(2)把△BCD 与△MEF 剪去,将△ABD绕点A顺时针旋转得△AB1D1,边AD1交FM 于点K(如图2),设旋转角为β(0°<β<90°),当△AFK 为等腰三角形时,求β的度数; (3)若将△AFM沿AB方向平移得到△A2F2M2(如图3),F2M2与AD交于点P,A2M2与BD交于点N,当NP∥AB时,求平移的距离.
11.如图1所示,正方形ABCD的边长为2,点E、F分别为边AB、AD的中点.如图2所示,将△AEF绕点A逆时针旋转α(0°<α≤90°),射线BE、DF相交于点P.
4
www.szzx100.com 江南汇教育网
(1)求证:△ABE≌△ADF;
(2)如图2,在△AEF旋转的过程中,若射线BE恰好通过AD的中点H,求PF的长; (3)如图3,若将△AEF从图1的位置旋转至AE⊥BE,试求点P在旋转过程中的运动路线长.
12.已知:正方形ABCD,等腰直角三角形的直角顶点落在正方形的顶点D处,使三角板绕点D旋转.
(1)当三角板旋转到图1的位置时,猜想CE与AF的数量关系,并加以证明; (2)在(1)的条件下,若DE=1,AE=,CE=3,求∠AED的度数;
(3)若BC=4,点M是边AB的中点,连结DM,DM与AC交于点O,当三角板的一边DF与边DM重合时(如图2),若OF=,求CN的长.
13.如图,在△ABC中,CA=CB,AB=10,0°<∠C<60°,AF⊥BC于点F,在FC上截取FD=FB,点E是AC上一点,连接DA、DE,且∠ADE=∠B. (1)求证:ED=EC
(2)若∠C=30°,求BD长;
(3)在(2)的条件下,将图1中△DEC绕点D逆时针旋转得到△DE′C′,请问在旋转的过程中,以点D、E、C′、E′为顶点的四边形可以构成平行四边形吗?若可以,请求出该平行四边形的面积;若不可以,请说明理由.
14.如图,正方形OABC的顶点O在坐标原点,且OA边和AB边所在直线的解析式分别为
5