(数控加工)数控机床机械
结构
数控机床机械结构
结构要求和总体布局
在数控机床发展的最初阶段,其机械结构和通用机床相比没有多大的变化,只是在自动变速、刀架和工作台自动转位和手柄操作等方面作些改变。随着数控技术的发展,考虑到它的控制方式和使用特点,才对机床的生产率、加工精度和寿命提出了更高的要求。数控机床的主体机构有以下特点:1)由于采用了高性能的无级变速主轴及伺服传动系统,数控机床的极限传动结构大为简化,传动链也大大缩短;2)为适应连续的自动化加工和提高加工生产率,数控机床机械结构具有较高的静、动态刚度和阻尼精度,以及较高的耐磨性,而且热变形小;3)为减小摩擦、消除传动间隙和获得更高的加工精度,更多地采用了高效传动部件,如滚珠丝杠副和滚动导轨、消隙齿轮传动副等;4)为了改善劳动条件、减少辅助时间、改善操作性、提高劳动生产率,采用了刀具自动夹紧装置、刀库和自动换刀装置及自动排屑装置等辅助装置。根据数控机床的适用场合和机构特点,对数控机床结构因提出以下要求:
壹、较高的机床静、动刚度
数控机床是按照数控编程或手动输入数据方式提供的指令自动
进行加工的。由于机械结构(如机床床身、导轨、工作台、刀架和主轴箱等)的几何精度和变形产生的定位误差在加工过程中不能人为地调整和补偿,因此,必须把各处机械结构部件产生的弹性变形控制在最小限度内,以保证所要求的加工精度和表面质量。
为了提高数控机床主轴的刚度,不但经常采用三支撑结构,而且选用钢性很好的双列短圆柱滚子轴承和角接触向心推力轴承铰接出相信忒力轴承,以减小主轴的径向和轴向变形。为了提高机床大件的刚度,采用封闭界面的床身,且采用液力平衡减少移动部件因位置变动造成的机床变形。为了提高机床各部件的接触刚度,增加机床的承载能力,采用刮研的方法增加单位面积上的接触点,且在结合面之间施加足够大的预加载荷,以增加接触面积。这些措施都能有效地提高接触刚度。
为了充分发挥数控机床的高效加工能力,且能进行稳定切削,在保证静态刚度的前提下,仍必须提高动态刚度。常用的措施主要有提高系统的刚度、增加阻尼以及调整构件的自振频率等。试验表明,提高阻尼系数是改善抗振性的有效方法。钢板的焊接结构既能够增加静刚度、减轻结构重量,又能够增加构件本身的阻尼。因此,近年来在数控机床上采用了钢板焊接结构的床身、立柱、横梁和工作台。封砂铸件也有利于振动衰减,对提高抗振性也有
较好的效果。
二、减少机床的热变形
在内外热源的影响下,机床各部件将发生不同程度的热变形,使工件和刀具之间的相对运动关系遭到破环,也是机床季度下降。对于数控机床来说,因为全部加工过程是计算的指令控制的,热变形的影响就更为严重。为了减少热变形,在数控机床结构中通常采用以下措施。
1.减少发热
机床内部发热时产生热变形的主要热源,应当尽可能地将热源从主机中分离出去。
2.控制温升
在采取了壹系列减少热源的措施后,热变形的情况将有所改善。但要完全消除机床的内外热源通常是十分困难的,甚至是不可能的。所以必须通过良好的散热和冷却来控制温升,以减少热源的影响。其中部较有效的方法是在机床的发热部位强制冷却,也能够在机床低温部分通过加热的方法,使机床各点的温度趋于壹
致,这样能够减少由于温差造成的翘曲变形。
3.改善机床机构
在同样发热条件下,机床机构对热变形也有很大影响。如数控机床过去采用的单立柱机构有可能被双柱机构所代替。由于左右对称,双立柱机构受热后的主轴线除产生垂直方向的平移外,其它方向的变形很小,而垂直方向的轴线移动能够方便地用壹个坐标的修正量进行补偿。
对于数控车床的主轴箱,应尽量使主轴的热变形发生在刀具切入的垂直方向上。这就能够使主轴热变形对加工直径的影响降低到最小限度。在结构上仍应尽可能减小主轴中心和主轴向地面的距离,以减少热变形的总量,同时应使主轴箱的前后温升壹致,避免主轴变形后出现倾斜。
数控机床中的滚珠丝杠常在预计载荷大、转速高以及散热差的条件下工作,因此丝杠容易发热。滚珠丝杠热生产造成的后果是严重的,尤其是在开环系统中,它会使进给系统丧失定位精度。目前某些机床用预拉的方法减少丝杠的热变形。对于采取了上述措施仍不能消除的热变形,能够根据测量结果由数控系统发出补偿脉冲加以修正。