2020高考数学压轴题命题区间探究与突破专题
第一篇 函数与导数
专题04 巧妙构造函数,应用导数证明不等式问题
一.方法综述
利用导数证明不等式是近几年高考命题的一种热点题型.利用导数证明不等式,关键是要找出与待证不等式紧密联系的函数,然后以导数为工具来研究该函数的单调性、极值、最值(值域),从而达到证明不等式的目的,这时常常需要构造辅助函数来解决.题目本身特点不同,所构造的函数可有多种形式,解题的繁简程度也因此而不同,这里给出几种常用的构造技巧.
二.解题策略
类型一 “比较法”构造差函数证明不等式
【例1】【2020·湖南长沙一中月考】已知函数f?x??ax?lnx. (Ⅰ)讨论f?x?的单调性;
1??ax?1a???,?fx?2ax?xe. (Ⅱ)若,求证:???e2???【解析】(Ⅰ)由题意得f'?x??a?1ax?1?, xx①当a?0时,则f'?x??0在?0,???上恒成立, ∴f?x?在?0,???上单调递减. ②当a?0时, 则当x???1?,???时,f'?x??0,f?x?单调递增, ?a?1?a?当x??0,?时,f??x??0,f?x?单调递减. 综上:当a?0时,f?x?在?0,???上单调递减; 当a?0时,f?x?在?0,????1??1?,??上单调递减,在???上单调递增.
a?a??
(Ⅱ)令g?x??f?x??2ax?xe则g'?x??eax?1ax?1ax?1 ?xeax?1?ax?lnx,
?axeax?1ax?1xe?1??11???a? ??ax?1??eax?1???,
xx?x???设r?x??xeax?1?1,
ax?1则r'?x???1?ax?e∵eax?1?0, ∴当x??0,?,
??1??时,r'?x??0,r?x? 单调递增; a?当x????1?,???时,r??x??0,r?x? 单调递减. ?a?∴r?x?max?r??∴eax?11?1??1????1?0a??(因为), ??2?e2?a??ae??1?0. x??1???1???∴g?x?在?0,??上单调递减,在??,???上单调递增,
aa?1?gx?g??∴???, min?a?设t??则g??1?0,e2?, ?a?t?1??ht??lnt?1(0?t?e2), ???2e?a?h'?t??112?0,eht??0,在上递减, ??2?et?∴h?t??he???0;
2∴g?x??0,故f?x??2ax?xe说明:判断eax?1ax?1.
1的符号时,还可以用以下方法判断: x11?lnxax?1??0得到a?由e, xx?
设p?x??1?lnxlnx?2,则p'?x??, 2xx当x?e2时,p'?x??0;当0?x?e2时,p'?x??0. 从而p?x?在0,e∴p?x?min?pe?2?上递减,在?e,???上递增.
21. 2e11?lnx1ax?1??0. 当a??2时,a?,即eexx??2??【指点迷津】
当题目中给出简单的基本初等函数,例如f?x?=x,g?x?=ln x,进而证明在某个取值范围内不等式
3f?x??g?x?成立时,可以类比作差法,构造函数h?x?=f?x?-g?x?或??x?=g?x?-f?x?,进而证明h?x?min?0或??x?max?0即可,在求最值的过程中,可以利用导数为工具.此外,在能够说明g?x??0?f?x??0?的前提下,也可以类比作商法,构造函数h?x?= h?x?min?1???x?max?1?.【举一反三】【2020·河北衡水中学月考】已知函数f(x)?lnx?a(?1),a?R. (Ⅰ)若f(x)?0,求实数a取值的集合;
f(x)f(x)(?(x)=),进而证明g(x)g(x)1x1?2?lnx?x2?(e?2)x. x1ax?a(x?0) 【解析】(Ⅰ)由已知,有f?(x)??2?2xxx1当a?0时,f()??ln2?a?0,与条件f(x)?0矛盾,
2(Ⅱ)证明:e?x当a?0时,若x?(0,a),则f?(x)?0,f(x)单调递减,若x?(a,??),则f?(x)?0,则f(x)单调递增. 所以f(x)在(0,??)上有最小值f(a)?lna?a(?1)?lna?1?a, 由题意f(x)?0,所以lna?1?a?0. 令g(x)?lnx?x?1,所以g?(x)?11?x?1?, xx1a当x?(0,1)时,g?(x)?0,g(x)单调递增;当x?(1,??)时,g?(x)?0,g(x)单调递减,所以g(x)在
(0,??)上有最大值g(1)?0,所以g(x)?lnx?x?1?0,lna?a?1?0,lna?a?1?0,a?1,
综上,当f(x)?0时,实数a取值的集合为?1?;
(Ⅱ)证明:由(Ⅰ)可知:a?1时,f(x)?0,即lnx?1?要证e?x1在x?0时恒成立. x1?2?lnx?x2?(e?2)x,只需证当x?0时,ex?x2?(e?2)x?1?0 xx2令h(x)?e?x?(e?2)x?1(x?0)
h?(x)?ex?2x?(e?2),令u(x)?ex?2x?(e?2),
则u?(x)?e?2,令u?(x)?e?2?0,解得x?ln2, 所以,函数u(x)在(0,ln2)内单调递减,在(ln2,??)上单调递增. 即函数h?(x)在(0,ln2)内单调递减,在(ln2,??)上单调递增. 而h?(0)?1?(e?2)?3?e?0.h?(ln2)?h?(1)?0
xx?存在x0?(0,ln2),使得h?(x0)?0
当x?(0,x0)时,h?(x)?0,h(x)单调递增;当x?(x0,1)时,h?(x)?0,h(x)单调递减. 当x?(1,??)时,h?(x)?0,h(x)单调递增, 又h(0)?1?1?0,h(1)?e?1?1?(e?2)?0,
?对?x?0,h(x)?0恒成立,即ex?x2?(e?2)x?1?0,
综上可得:e?x1?2?lnx?x2?(e?2)x成立. x类型二 “拆分法”构造两函数证明不等式
【例2】【2020·安徽阜阳统测】设函数f?x??x?1,g?x??tlnx,其中x??0,1?,t为正实数. x(1)若f?x?的图象总在函数g?x?的图象的下方,求实数t的取值范围; (2)设H?x??lnx?x?1e?x?1?1?2x2??????1??,证明:对任意x??0,1?,都有H?x??0. x?【解析】(1)因为函数f?x?的图象恒在g?x?的图象的下方, 所以f?x??g?x??x?设F?x??x?1?tlnx?0在区间(0,1)上恒成立. x1?tlnx,其中x??0,1?, x
1tx2?tx?1所以F??x??1?2??,其中??t2?4,t?0. 2xxx0, ①当t2?4?0,即0?t?2时,F??x?…所以函数F?x?在0,1上单调递增,F?x??F?1??0,
()故
f?x??g?x??0成立,满足题意.
2②当t2?4?0,即t?2时,设??x??x?tx?1?0?x?1?, 则??x?图象的对称轴x?t?1,??0??1,??1??2?t?0, 2所以??x?在0,1上存在唯一实根,设为x1,则x??x1,1?,??x??0,F??x??0,
()所以F?x?在?x1,1?上单调递减,此时F?x??F?1??0,不合题意. 综上可得,实数t的取值范围是?0,2.
2x1?x?1xe?x?1??x???(2)证明:由题意得H?x??elnx??x?1??e?1???exlnx?, x??xx2?因为当x??0,1?时,xex?x?1?0,lnx?0, 所以H?x??0?exx?xlnx?2?1??xex?x?1?xxexx2?1. ?x?xe?x?1xlnx令h?x??e?x?1?0?x?1?,则h??x??e?1?0,
所以h?x?在0,1上单调递增,h?x??h?0??0,即ex?x?1,
()exex. 所以xe?x?1?x?x?1??x?1?x?1,从而x?2xe?x?1x?1x21x2?1由(1)知当t?2时,x??2lnx?0在x??0,1?上恒成立,整理得?2.
xxlnxex令m?x??2?0?x?1?,则要证H?x??0,只需证m?x??2.
x?1因为m??x??ex?x?1?2?x2?1?2?0,所以m?x?在(0,1)上单调递增,