好文档 - 专业文书写作范文服务资料分享网站

matlab实现牛顿迭代法求解非线性方程组

天下 分享 时间: 加入收藏 我要投稿 点赞

已知非线性方程组如下 3*x1-cos(x2*x3)-1/2=0 x1^2-81*(x2+^2+sin(x3)+=0 exp(-x1*x2)+20*x3+(10*pi-3)/3=0 求解要求精度达到

———————————————————————————————— 首先建立函数fun

储存方程组编程如下将保存到工作路径中: function f=fun(x); %定义非线性方程组如下 %变量x1 x2 x3 %函数f1 f2 f3 syms x1 x2 x3 f1=3*x1-cos(x2*x3)-1/2; f2=x1^2-81*(x2+^2+sin(x3)+; f3=exp(-x1*x2)+20*x3+(10*pi-3)/3; f=[f1 f2 f3];

———————————————————————————————— 建立函数dfun

用来求方程组的雅克比矩阵将保存到工作路径中: function df=dfun(x);

%用来求解方程组的雅克比矩阵储存在dfun中 f=fun(x);

df=[diff(f,'x1');diff(f,'x2');diff(f,'x3')]; df=conj(df');

———————————————————————————————— 编程牛顿法求解非线性方程组将保存到工作路径中:

function x=newton(x0,eps,N); con=0;

%其中x0为迭代初值eps为精度要求N为最大迭代步数con用来记录结果是否收敛 for i=1:N;

f=subs(fun(x0),{'x1' 'x2' 'x3'},{x0(1) x0(2) x0(3)}); df=subs(dfun(x0),{'x1' 'x2' 'x3'},{x0(1) x0(2) x0(3)}); x=x0-f/df;

for j=1: length(x0); il(i,j)=x(j); end

if norm(x-x0)

%以下是将迭代过程写入txt文档文件名为 fid=fopen('','w'); fprintf(fid,'iteration'); for j=1:length(x0) fprintf(fid,' x%d',j); end for j=1:i

fprintf(fid,'\\nm ',j); for k=1:length(x0) fprintf(fid,' %',il(j,k)); end

end if con==1

fprintf(fid,'\\n计算结果收敛!'); end if con==0

fprintf(fid,'\\n迭代步数过多可能不收敛!'); end

fclose(fid);

———————————————————————————————— 运行程序在matlab中输入以下内容 newton([ ],,20)

———————————————————————————————— 输出结果

——————————————————————————————————————————

在iteration中查看迭代过程 iteration x1 x2 x3

.mulStablePoint用不动点迭代法求非线性方程组的一个根

function [r,n]=mulStablePoint(F,x0,eps) %非线性方程组:f %初始解:a %解的精度:eps %求得的一组解:r

%迭代步数:n if nargin==2 eps=; end

x0 = transpose(x0); n=1; tol=1; while tol>eps

r= subs(F,findsym(F),x0); %迭代公式

tol=norm(r-x0); 求法,

norm为矩阵的欧几里德范数 n=n+1; x0=r;

if(n>100000) 制

disp('迭代步数太多,可能不收敛!'); return; end end

x0=[0 0 0];

[r,n,data]=budong(x0);

%注意矩阵的误差 %迭代步数控 disp('不动点计算结果为') x1=[1 1 1]; x2=[2 2 2];

[x,n,data]=new_ton(x0);

disp(’初始值为0,牛顿法计算结果为:’) [x,n,data]=new_ton(x1);

disp('初始值为1,牛顿法计算结果为:') [x,n,data]=new_ton(x2);

disp ('初始值为2,牛顿法计算结果为:')

function[r,n,data]=budong(x0, tol) if nargin=-1 tol=1e-3: end

x1=budong fun(x0); n=1;

while(norm(x1-x0))tol)&(n500) x0=x1;

x1=budong_fun(x0); n=n+1: data(:,n)=x1; end r=x1:

function [x,n,data]=new_ton(x0, tol) if nargin=-1

matlab实现牛顿迭代法求解非线性方程组

已知非线性方程组如下3*x1-cos(x2*x3)-1/2=0x1^2-81*(x2+^2+sin(x3)+=0exp(-x1*x2)+20*x3+(10*pi-3)/3=0求解要求精度达到————————————————————————————————首先建立函数fun储存方程组编程如下将保存到工作路径中:functionf=fun(x)
推荐度:
点击下载文档文档为doc格式
4thgi6ww533z01x0bvw21wxgu8k84a00nbd
领取福利

微信扫码领取福利

微信扫码分享