好文档 - 专业文书写作范文服务资料分享网站

毒理学实验报告

天下 分享 时间: 加入收藏 我要投稿 点赞

化学化工学院 环境毒理学实验报告

专 业: 环境科学 班 级: 09级02班 姓 名: 学 号:

二〇一一年六月

莱茵河污染事件(以DDT为例分析)

1、污染事件发生原因及过程:

1986年11月1日深夜,瑞士巴富尔市桑多斯化学公司仓库意外起火,装有1250吨剧毒农药的钢罐爆炸,硫、磷、汞等毒物随着百余吨灭火剂进入下水道,排入莱茵河。警报传向下游瑞士、德国、法国、荷兰四国835公里沿岸城市。剧毒物质构成70公里长的微红色飘带,以每小时4公里速度向下游流去,流经地区鱼类死亡,沿河自来水厂全部关闭,改用汽车向居民送水,接近海口的荷兰,全国与莱茵河相通的河闸全部关闭。翌日,化工厂有毒物质继续流入莱茵河,后来用塑料塞堵下水道。8天后,塞子在水的压力下脱落,几十吨含有汞的物质流入莱茵河,造成又一次污染。

11月21日,德国巴登市的苯胺和苏打化学公司冷却系统故障,又使2吨农药流入莱茵河,使河水含毒量超标准200倍。这次污染使莱茵河的生态受到了严重破坏。

2、直接影响及经济损失:

事故造成约160公里范围内多数鱼类死亡 , 约480公里范围内的井水受到污染影响不能饮用 。污染事故警报传向下游瑞士 、德国 、法国 、荷兰四国沿岸城市 , 沿河自来水厂全部关闭 , 改用汽车向居民定量供水。由于莱茵河在德国境内长达865公里 , 是德国最重要的河流 , 因而遭受损失最大。事故使德国几十年为治理莱茵河投资的210亿美元付诸东流。接近海口的荷兰 , 将与莱茵河相通的河闸全部关闭。法国和前西德的一些报纸将这次事件与印度博帕尔毒气泄漏事件 、前苏联的切尔诺贝利核电站爆炸事件相提并论 。《科普知识 》总结了 世纪世界上发生的最闻名的污染事故 , 莱茵河水污染事故被列为 “ 六大污染事故 ”之六。

3、毒理学相应原理:

污染事故中,被迫排入河流的污染物多为有机农药,如:有机氯农药、有机磷农药、氨基钾酸酯类农药、拟除虫菊酯类农药等。这里选择其中有机氯农药中具有代表性的一种——DDT,为例分析农药类污染物进入环境后会对环境产生怎

样的影响。

DDT又称滴滴涕,二二三,化学名为:双对氯苯基三氯乙烷(Dichlorodiphenyltrichloroethane),化学式(ClC6H4)2CH(CCl3)。它为白色晶体,不溶于水,易溶于煤油等有机物,其化学性质稳定,在常温下不分解,可制成乳剂,具有较低的急毒性和较长的持久性,是有效的杀虫剂。分子式如图1所示:

图1. DDT分子式

3.1 DDT进入环境的途径

DDT进入环境的主要来源是农药的直接使用及农药生产过程中的废水排放、环境突发公害事件等。

3.2 DDT在环境中的转运、转化和富集

DDT进入环境后,以其高稳定的化学性质,会在环境中发生相应的空间位移而引起富集、分散和消失。它在环境各圈层中的迁移转化主要分为机械迁移、和生物迁移。

在土壤环境中,虽然DDT分子中有致钝的氯原子取代基、低水溶性等性质使得微生物难以降解,但是部分微生物,如:变形杆菌、假单胞菌等细菌和真菌仍然能够通过共代谢的方式(还原脱氯、DDT开环、间位开环作用等)降解部分DDT,使其转化为其它毒性更小或更大的物质。但是,进入土壤环境的DDT更多的是随着植物、微生物和部分动物的新陈代谢随着食物链富集,从而产生更深层次的危害,如以对美国长岛河口区生物对DDT的研究为例:

水环境 (1×10-6mg/m3)

大鱼(2mg/m3) 浮游生物体(0.04mg/m3) 小鱼(0.5mg/m3) 海鸟(25mg/m3) 人体(直接性DDT中毒)

图2. DDT在环境中的典型富集模式

在水环境中,DDT很少会发生配位、螯合等水体中常见的污染物物理-化学迁移而随水流动或通过吸附于悬浮物而传输,悬浮物沉积于水底将其带入沉积物中。而是凭借其较高的脂/水分配系数,大多数快速的进入动物体内,一部分会在肝、肠和神经等组织中,被DDT-脱氯化氢酶催化(该过程需要谷胱甘肽维持其酶结构),发生典型的水解脱卤反应,转化为DDE等毒性较低,易于排泄的代谢物。如已有的研究表明:人体吸收的DDT约60℅可经此反应转化为毒性较低的DDE(仍会长时间停留在脂肪组织中,产生危害);昆虫(特别是家蝇和蚊类)也是凭借其DDT-脱氯化氢酶的高活性使DDT在其体内得到大部分的转化;富集作用尤为明显,例如:美国人引以为豪的白头鹰曾一度濒临灭绝,研究表明罪魁祸首便是DDT在水环境中食物链的富集,由于白头鹰处于食物链的顶端(如图2所示,其体内DDT含量约为25mg/m3),导致高剂量的DDT富集在其体内,从而引起白头鹰的钙代谢失调,使得其蛋壳变软,变薄,无法孵化。

在大气环境中,DDT绝大部分存在于颗粒物中(尤其是PM2.5,PM10)。而不同粒径的颗粒物作为DDT的载体,会携带其进行系列不同的迁移转运。若DDT存在于粒径75um以上的颗粒物中,会直接进行大气干沉降(颗粒物在重力作用下沉降,或与其它物体碰撞后发生沉降)或湿沉降(通过降雨等事件完成)而进入土壤环境或水体中;若其存在于10—75um粒径的颗粒物中,则容易通过扩散和被气流搬运而迁移,转运进入到暴露于大气环境中的生物体中;若其存在于粒径<10um,尤其是2um左右的颗粒物中,不论是雨除或冲刷,都不会让其进入土壤环境或水体中,而是悬浮于空中,随气流输运到几百公里甚至上千公里以外的地方,直到进入暴露于该气体环境中的生物体内,产生危害为止。 3.3 DDT对生物体的危害——以人体为例

DDT进入人体的途径多种多样,如图2所示:

空气 呼吸道 人体 皮肤接触 消化道 家禽的乳、肉、蛋等出产品 DDT 粮食、蔬菜等农作物 鱼虾 土壤 江、河、湖泊 浮游生物 饮水 水禽

图3. 环境中DDT进入人体的主要途径

DDT进入人体后,可经肝脏转化生成毒性比较低的DDE等,如前所述。而转化后的DDE虽然不会进一步转化。但能长期蓄积在脂肪组织中,DDT以60℅DDE形式贮存,富集。这样,使得DDT对人体的危害特点是具有蓄积性和长期效应,它的毒作用机理如表1所述: 对神经系统的影响 DDT能作用于神经脂膜,降低神经膜对K+离子的通透性,改变神经元的膜电位,抑制神经末梢ATP酶活性,对Na+,K+-ATP酶的抑制更为明显。除此之外,由于DDT分子结构中带有对位氯的苯环,其能与神经膜上的DDT受体部位作用,造成膜结构扭曲,且DDT结构中的三氯乙烷同时置于膜孔道中,让Na+易透过膜孔道而漏出,导致不正常神经冲动,引发各种症状。 对酶活性的影响 对类固醇激素的影响 DDT能诱导产生较多的脱氯化氢酶加速其转化为DDE的过程,致使肝细胞肿大,影响其它药物的代谢。这样,随着DDE的蓄积,加强了对某些酶的抑制,肝细胞脂肪变性、萎缩、乃至死亡,直接性的影响人体身体健康。 DDT在肝脏中的代谢产物DDD能抑制肾上腺皮质分泌激素,降低肾上腺皮质对ACTH(血浆促肾上腺皮质激素)的反应。 表1. DDT对人体的毒作用机理

另外,最新的研究表明,DDT还能扰乱人体的荷尔蒙分泌,如:墨西哥科学家对24名16到28岁墨西哥男子的血样进行了系列研究,首次证实了人体内DDTs水平升高会导致精子数目减少。再者,关于DDT的致癌、致突变作用等现在仍处于研究阶段。

4t3sz0th6v207lq1bbd16zh7s4eqk601d0u
领取福利

微信扫码领取福利

微信扫码分享